Learn More
The mechanisms by which Escherichia coli cells survive exposure to the toxic electrophile N-ethylmaleimide (NEM) have been investigated. Stationary-phase E. coli cells were more resistant to NEM than exponential-phase cells. The KefB and KefC systems were found to play an important role in protecting both exponential- and stationary-phase cells against NEM.(More)
The role of the KefB and KefC potassium efflux systems in protecting Escherichia coli cells against the toxic effects of the electrophile N-ethylmaleimide has been investigated. Activation of KefB and KefC aids the survival of cells exposed to high concentrations (> 100 microM) of NEM. High potassium concentrations reduce the protection afforded by(More)
The resonance assignment, secondary structure, and dynamic properties of a stable noncoiled coil conformation of the dimerization domain from yeast transcription activation factor GCN4 (Leu zipper; LZGCN4) are presented. Introduced in this paper, a new line of fully optimized spin state exchange experiments, XYEX-TROSY, applied to 1HN, 15N and(More)
Basic-region leucine zipper (bZIP) proteins are one of the largest transcription factor families that regulate a wide range of cellular functions. Owing to the stability of their coiled coil structure leucine zipper (LZ) domains of bZIP factors are widely employed as dimerization motifs in protein engineering studies. In the course of one such study, the(More)
The 28 kDa secretory protein is one of the abundant water-soluble proteins in olfactory epithelium of mammals. Analysis of partial amino acid sequence of the 28 kDa protein strongly suggested that it belongs to a new family of highly conserved antioxidant proteins requiring thiol for their antioxidant activity (TSA/AhpC family). In the present study, we(More)
The KefB and KefC systems of Escherichia coli cells are activated by iodoacetate (IOA) and chlorodinitrobenzene (CDNB), leading to a rapid drop in the intracellular pH. However, survival of exposure to IOA or CDNB was found to be essentially independent of KefB and KefC activation. No correlation was found between the toxicity of the compound and its(More)
Changes in protein conformation can affect protein function, but methods to probe these structural changes on a global scale in cells have been lacking. To enable large-scale analyses of protein conformational changes directly in their biological matrices, we present a method that couples limited proteolysis with a targeted proteomics workflow. Using our(More)
The interaction between the c(11)ring and the gammaepsilon complex, forming the rotor of the Ilyobacter tartaricus ATP synthase, was probed by surface plasmon resonance spectroscopy and in vitro reconstitution analysis. The results provide, for the first time, a direct and quantitative assessment of the stability of the rotor. The data indicated very tight(More)
Protein-metabolite interactions play a vital role in the regulation of numerous cellular processes. Consequently, identifying such interactions is a key prerequisite for understanding cellular regulation. However, the noncovalent nature of the binding between proteins and metabolites has so far hampered the development of methods for systematically mapping(More)
Transcription networks consist of hundreds of transcription factors with thousands of often overlapping target genes. While we can reliably measure gene expression changes, we still understand relatively little why expression changes the way it does. How does a coordinated response emerge in such complex networks and how many input signals are necessary to(More)