Learn More
A model for platelet activation based on the theory of damage, incorporating cumulative effects of stress history and past damage (senescence) was applied to a three-dimensional (3-D) model of blood flow through a St. Jude Medical (SJM) bileaflet mechanical heart valve (MHV), simulating flow conditions after implantation. The calculations used unsteady(More)
A study was conducted to measure in vitro the procoagulant properties of platelets induced by flow through Carbomedics bileaflet and Bjork–Shiley monoleaflet mechanical heart valves (MHVs). Valves were mounted in a left ventricular assist device, and platelets were circulated through them under pulsatile flow. Platelet activation states (PAS) were measured(More)
Abdominal aortic aneurysm (AAA) rupture represents a major cardiovascular risk, combining complex vascular mechanisms weakening the abdominal artery wall coupled with hemodynamic forces exerted on the arterial wall. At present, a reliable method to predict AAA rupture is not available. Recent studies have introduced fluid structure interaction (FSI)(More)
Sudden heart attacks remain one of the primary causes of premature death in the developed world. Asymptomatic vulnerable plaques that rupture are believed to prompt such fatal heart attacks and strokes. The role of microcalcifications in the vulnerable plaque rupture mechanics is still debated. Recent studies suggest the microcalcifications increase the(More)
Patients who receive prosthetic heart valve (PHV) implants require mandatory anticoagulation medication after implantation due to the thrombogenic potential of the valve. Optimization of PHV designs may facilitate reduction of flow-induced thrombogenicity and reduce or eliminate the need for post-implant anticoagulants. We present a methodology entitled(More)
Flow induced platelet activation (PA) can lead to platelet aggregation, deposition onto the blood vessel wall, and thrombus formation. PA was thoroughly studied under unidirectional flow conditions. However, in regions of complex flow, where the platelet is exposed to varying levels of shear stress for varying durations, the relationship between flow and PA(More)
Current diagnostic testing for cardiovascular pathology usually rests on either physiological or anatomic measurement. Multiple tests must then be combined to arrive at a conclusion regarding treatment of a specific pathology. Much of the diagnostic decisions currently made are based on rough estimates of outcomes, often derived from gross anatomic(More)
Asymptomatic vulnerable plaques (VP) in coronary arteries accounts for significant level of morbidity. Their main risk is associated with their rupture which may prompt fatal heart attacks and strokes. The role of microcalcifications (micro-Ca), embedded in the VP fibrous cap, in the plaque rupture mechanics has been recently established. However, their(More)
Elective repair of abdominal aortic aneurysm (AAA) is warranted when the risk of rupture exceeds that of surgery, and is mostly based on the AAA size as a crude rupture predictor. A methodology based on biomechanical considerations for a reliable patient-specific prediction of AAA risk of rupture is presented. Fluid–structure interaction (FSI) simulations(More)
Abdominal aortic aneurysm (AAA) represents a degenerative disease process of the abdominal aorta that results in dilation and permanent remodeling of the arterial wall. A fluid structure interaction (FSI) parametric study was conducted to evaluate the progression of aneurysmal disease and its possible implications on risk of rupture. Two parametric studies(More)