Learn More
The Artemis nuclease is defective in radiosensitive severe combined immunodeficiency patients and is required for the repair of a subset of ionising radiation induced DNA double-strand breaks (DSBs) in an ATM and DNA-PK dependent process. Here, we show that Artemis phosphorylation by ATM and DNA-PK in vitro is primarily attributable to S503, S516 and S645(More)
Two highly conserved double-strand break (DSB) repair pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ), function in all eukaryotes. How a cell chooses which pathway to utilize is an area of active research and debate. During NHEJ, the DNA-dependent protein kinase (DNA-PK) functions as a "gatekeeper" regulating DNA end access.(More)
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray(More)
Nonhomologous end joining (NHEJ) is the major pathway for the repair of DNA double strand breaks (DSBs) in human cells. NHEJ requires the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku70, Ku80, XRCC4, DNA ligase IV and Artemis, as well as DNA polymerases mu and lambda and polynucleotide kinase. Recent studies have identified an(More)
DNA ligase IV (LigIV) is critical for nonhomologous end joining (NHEJ), the major DNA double-strand break (DSB) repair pathway in human cells, and LigIV activity is regulated by XRCC4 and XLF (XRCC4-like factor) interactions. Here, we employ small angle X-ray scattering (SAXS) data to characterize three-dimensional arrangements in solution for full-length(More)
Nonhomologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. Several proteins, including the DNA-dependent protein kinase (DNA-PK), XRCC4 and DNA ligase IV, are required for nonhomologous end joining both in vitro and in vivo. Since XRCC4 is recruited to the DNA double-strand break with DNA-PK,(More)
Molecular epidemiological studies have shown that gene polymorphisms of vitamin D receptor (VDR) are associated with prostate cancer risks. However, previous results from many molecular studies remain inconsistent. Blood samples were collected from 122 prostate cancer patients and 130 age-matched control subjects in the Han population of Southern China. The(More)
The inhibitory effects of iron-substituted phosphomolybdic acid (Na6PMo11FeO40, abbreviated as PMo11Fe) on mushroom tyrosinase were investigated. The Native-PAGE results show that PMo11Fe has an inhibitory effect on tyrosinase. A spectrophotometric analysis shows that PMo11Fe is a reversible and noncompetitive inhibitor with KI=KIS=0.47 mmol L(-1). The(More)
Non-homologous end joining (NHEJ) is one of the primary pathways for the repair of ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in mammalian cells. Proteins required for NHEJ include the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), Ku, XRCC4 and DNA ligase IV. Current models predict that DNA-PKcs, Ku, XRCC4 and DNA(More)
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the(More)