Learn More
The XRCC4-like factor (XLF)-XRCC4 complex is essential for nonhomologous end joining, the major repair pathway for DNA double strand breaks in human cells. Yet, how XLF binds XRCC4 and impacts nonhomologous end joining functions has been enigmatic. Here, we report the XLF-XRCC4 complex crystal structure in combination with biophysical and mutational(More)
Telomere integrity in human cells is maintained by the dynamic interplay between telomerase, telomere associated proteins, and DNA repair proteins. These interactions are vital to suppress DNA damage responses and unfavorable changes in chromosome dynamics. The DNA-dependent protein kinase (DNA-PK) is critical for this process. Cells deficient for(More)
DNA double strand break (DSB) repair by non-homologous end joining (NHEJ) is initiated by DSB detection by Ku70/80 (Ku) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) recruitment, which promotes pathway progression through poorly defined mechanisms. Here, Ku and DNA-PKcs solution structures alone and in complex with DNA, defined by x-ray(More)
Maintenance of telomere integrity requires the dynamic interplay between telomerase, telomere-associated proteins and DNA repair proteins. These interactions are vital to suppress DNA damage responses and changes in chromosome dynamics that can result in aneuploidy or other transforming aberrations. The interaction between the DNA repair protein Ku and the(More)
XRCC4 and XLF are structurally related proteins important for DNA Ligase IV function. XRCC4 forms a tight complex with DNA Ligase IV while XLF interacts directly with XRCC4. Both XRCC4 and XLF form homodimers that can polymerize as heterotypic filaments independently of DNA Ligase IV. Emerging structural and in vitro biochemical data suggest that XRCC4 and(More)
We report that Imetelstat, a telomerase inhibitor that binds to the RNA component of telomerase (hTR), can sensitize primary CLL lymphocytes to fludarabine in vitro. This effect was observed in lymphocytes from clinically resistant cases and with cytogenetic abnormalities associated with bad prognosis. Imetelstat mediated-sensitization to fludarabine was(More)
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the(More)
DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such(More)