Learn More
The segmentation of neonatal brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), is challenging due to the low spatial resolution, severe partial volume effect, high image noise, and dynamic myelination and maturation processes. Atlas-based methods have been widely used for guiding neonatal brain segmentation. Existing(More)
Segmentation of infant brain MR images is challenging due to insufficient image quality, severe partial volume effect, and ongoing maturation and myelination processes. In the first year of life, the image contrast between white and gray matters of the infant brain undergoes dramatic changes. In particular, the image contrast is inverted around 6-8months of(More)
Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases.(More)
In this paper, we propose a new prostate computed tomography (CT) segmentation method for image guided radiation therapy. The main contributions of our method lie in the following aspects. 1) Instead of using voxel intensity information alone, patch-based representation in the discriminative feature space with logistic sparse LASSO is used as anatomical(More)
Segmentation of infant brain MR images is challenging due to poor spatial resolution, severe partial volume effect, and the ongoing maturation and myelination processes. During the first year of life, the brain image contrast between white and gray matters undergoes dramatic changes. In particular, the image contrast inverses around 6-8months of age, where(More)
Lung field segmentation in the posterior-anterior (PA) chest radiograph is important for pulmonary disease diagnosis and hemodialysis treatment. Due to high shape variation and boundary ambiguity, accurate lung field segmentation from chest radiograph is still a challenging task. To tackle these challenges, we propose a joint shape and appearance sparse(More)
Quantitative study of perivascular spaces (PVSs) in brain magnetic resonance (MR) images is important for understanding the brain lymphatic system and its relationship with neurological diseases. One of the major challenges is the accurate extraction of PVSs that have very thin tubular structures with various directions in three-dimensional (3D) MR images.(More)
Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. CBCT scans have relatively low cost and low radiation dose in comparison to conventional spiral CT scans. However, a major limitation of CBCT scans is the widespread image(More)
PURPOSE Automatic brain image labeling is highly demanded in the field of medical image analysis. Multiatlas-based approaches are widely used due to their simplicity and robustness in applications. Also, random forest technique is recognized as an efficient method for labeling, although there are several existing limitations. In this paper, the authors(More)
Anatomical landmark detection plays an important role in medical image analysis, e.g. for registration, segmentation and quantitative analysis. Among the various existing methods for landmark detection, regression-based methods have recently attracted much attention due to their robustness and efficiency. In these methods, landmarks are localised through(More)