Learn More
We report direct coupling of plasmonic and photonic nanowires using ultracompact near-field interaction. Photon-plasmon coupling efficiency up to 80% with coupling length down to the 200 nm level is achieved between individual Ag and ZnO nanowires. Hybrid nanophotonic components, including polarization splitters, Mach-Zehnder interferometers, and microring(More)
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2),(More)
Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement(More)
We demonstrate a simple, direct measurement of propagation losses in single silver nanowires. Using a waveguiding nanoscale fiber taper for highly efficient launching, propagation surface plasmon polaritons are excited in the silver nanowire with high efficiency. The output intensity as light radiation at the end of the nanowire is quantified with high(More)
We demonstrate a dynamic surface plasmonic modulation based on graphene-nanowire (grapheme-NW) hybrid structures in the visible light range. A static modulation depth of as high as 0.07 dB/μm has been achieved experimentally. Through careful simulation and systematical experimental investigation, we found that the dual-confinement effect of charge density(More)
We report on the fabrication of three-dimensional (3D) high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the 3D nature of femtosecond laser direct writing. The processing mainly consists of formation of freestanding microdisks by femtosecond laser direct writing and subsequent wet chemical(More)
Semiconductor nanocables are good candidates for developing robust and environmental stable nanolasers. In this work, high-quality CdSe/SiO(2) nanocables were synthesized by the facile chemical vapor deposition method. The as-synthesized nanocables were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and(More)
We demonstrate whispering gallery (WG) resonance of surface plasmon polaritons (SPPs) in a 2-dimensional confined Au cylinder by self interference. Despite the leakage of SPPs along the axis of the cylinder, Q factors of 375 are obtained in a cylinder with diameter of 30 μm. The coupling-angle-dependence of the WG resonance is also investigated. Our results(More)
Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight.(More)
Graphene is a favorable candidate for electrodes of organic light emitting diodes (OLEDs). Graphene has quite a high work function of ∼4.5 eV, and has been extensively studied when used as anodes of OLEDs. In order to use graphene as a cathode, the electron injection barrier between the graphene cathode and the electron transport layer has to be low enough.(More)