Learn More
A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our(More)
The scanner drift of the atomic force microscope (AFM) is a great disadvantage to the application of digital image correlation to micro/nano-scale deformation measurements. This paper has addressed the image distortion induced by the scanner drifts and developed a method to reconstruct AFM images for the successful use of AFM image correlation. It presents(More)
The continuous miniaturization of microelectronic devices and interconnections demand more and more experimental strain/stress analysis of micro- and nanoscale components for material characterization and structure reliability analysis. The digital image correlation (DIC) technique, with the aid of scanning probe microscopes, has become a very promising(More)
  • 1