Yaochen Li

Learn More
The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate(More)
Sodium iodate (NaIO3)-induced retina injury is one of models that is commonly used to study various retinal diseases caused by retinal pigment epithelium (RPE) injury such as AMD. Previous researches have revealed that RPE and photoreceptors are main impaired objects in this model. By comparison, intra-retinal layer has not been studied in detail after(More)
Müller cells can completely repair retinal injury by acting as endogenous stem/progenitor cells in lower-order vertebrates. However, a safe and effective approach to activate progenitor potential of retinal Müller cells in higher-order vertebrates, which rarely re-enter the cell cycle, is a bottleneck problem. In the present study, Royal College of(More)
Müller cells are the principal glial cells expressing membrane-bound potassium channel and predominantly mediating the homeostatic regulation of extracellular K+ produced by neuronal activity in retina. It's well known that Müller cells can be activated in many pathological conditions, but little is known about the change of potassium currents of Müller(More)
Our aim is to define related molecular events on how dormant Müller glia cells re-enter the cell cycle, proliferate and produce new retinal neurons from initial injury to glial scar formation. Sodium iodate (NaIO3) was used to induce acute retinal injury. Long-Evans rats were administered with NaIO3 or phosphate-buffered saline by intraperitoneal injection.(More)
  • 1