Learn More
The aim of this study was to investigate the effects of GATA-4 on the differentiation of P19 cells into cardiomyocytes and to examine the relationship between GATA-4 and cardiomyocytes. We constructed vectors to overexpress and silence GATA-4. These vectors, as well as empty ones were transfected into P19 cells. Subsequently, reverse(More)
microRNA (miRNA) expression is tightly controlled in a tissue-specific and developmental stage-specific manner; some are highly and specifically expressed in cardiovascular tissues. miRNA expression profiling, using miRNA microarrays facilitates studying the biological function of miRNAs. We investigated changes in miRNA expression profiles during(More)
Congenital heart disease (CHD) is the most common type of birth defect, but its underlying molecular mechanisms remain unidentified. Previous studies determined that Homo sapiens LYR motif containing 1 (LYRM1) is a novel nucleoprotein expressed at the highest level in adipose tissue and in high levels in heart tissue. The LYRM1 gene may play an important(More)
Fatty acid binding protein 3 (FABP3) (also known as H-FABP) is a member of the intracellular lipid-binding protein family, and is mainly expressed in cardiac muscle tissue. The in vivo function of FABP3 is proposed to be in fatty acid metabolism, trafficking, and cell signaling. Our previous study found that FABP3 is highly regulated in patients with(More)
Fatty acid binding protein 3 (FABP3, also termed heart-type fatty acid binding protein) is a member of the intracellular lipid-binding protein family that may be essential in fatty acid transport, cell growth, cellular signaling and gene transcription. Previously, we demonstrated that FABP3 was involved in apoptosis-associated congenital cardiac(More)
Accumulating evidence has revealed that the mammalian heart possesses a measurable capacity for renewal. Neonatal mice retain a regenerative capacity over a short time-frame (≤6 days), but this capacity is lost by 7 days of age. In the present study, differential gene expression profiling of mouse cardiac tissue was performed to further elucidate the(More)
To explore the effects of LYRM1 knockdown on proliferation, apoptosis, differentiation and mitochondrial function in the embryonic carcinoma (P19) cell model of cardiac differentiation. Knockdown of LYRM1 using small interfering RNA (siRNA) was confirmed by quantitative real-time PCR. Cell Counting Kit-8(CCK-8) proliferation assays and cell cycle analysis(More)
  • 1