Learn More
High salinity and drought are the major abiotic stresses that adversely affect plant growth and agricultural productivity. To investigate genes that are involved in response to abiotic stresses in Brassica napus, a comprehensive survey of genes induced by high-salinity and drought stresses was done by macroarray analysis. In total, 536 clones were(More)
The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from(More)
Overexpression of foreign proteins in Escherichia coli often leads to the formation of inclusion bodies (IBs), which becomes the major bottleneck in the preparation of recombinant proteins and their applications. In the present study, 36 proteins from IBs were refolded using a simple refolding method. Refolding yields of these proteins were defined as the(More)
The full-length cDNA of MTH1in Schistosoma japonicum was previously isolated. However, insoluble protein expression in Escherichia coli is the biggest bottleneck limiting biological and biophysical studies. Protein aggregation could not be significantly prevented using solubilization or refolding techniques, and denatured MTH1 protein could not be refolded(More)
Protein refolding is an important process to recover active recombinant proteins from inclusion bodies. Refolding by simple dilution, dialysis and on-column refolding methods are the most common techniques reported in the literature. However, the refolding process is time-consuming and laborious due to the variability of the behavior of each protein and(More)
  • 1