Learn More
Although phytoplankton are the major source of marine dissolved organic matter (DOM), their blooms are a global problem that can greatly affect marine ecological systems, especially free-living bacteria, which are the primary DOM degraders. In this study, we analyzed free-living bacterial communities from Xiamen sea during an Akashiwo sanguine bloom using(More)
A strain O4-6, which had pronounced algicidal effects to the harmful algal bloom causing alga Phaeocystis globosa, was isolated from mangrove sediments in the Yunxiao Mangrove National Nature Reserve, Fujian, China. Based on the 16S rRNA gene sequence and morphological characteristics, the isolate was found to be phylogenetically related to the genus(More)
Harmful algal blooms occur all over the world, destroying aquatic ecosystems and threatening other organisms. The culture supernatant of the marine algicidal actinomycete BS01 was able to lysis dinoflagellate Alexandrium tamarense ATGD98-006. Physiological and biochemical responses to oxidative stress in A. tamarense were investigated to elucidate the(More)
Lepidium meyenii (Maca), originated from Peru, has been cultivated widely in China as a popular health care food. However, the chemical and effective studies of Maca were less in-depth, which restricted its application seriously. To ensure the quality of Maca, a feasible and accurate strategy was established. One hundred and sixty compounds including 30(More)
The digestive tract of lepidopteran insects is unique given its highly alkaline pH. The adaptive plasticity of digestive enzymes in this environment is crucial to the highly-efficient nutritional absorption in Lepidoptera. However, little is known about the molecular adaptation of digestive enzymes to this environment. Here, we show that lepidopteran(More)
Phytoplankton blooms are a worldwide problem and can greatly affect ecological processes in aquatic systems, but its impacts on the functional potential of microbial communities are limited. In this study, a high-throughput microarray-based technology (GeoChip) was used to profile the functional potential of free-living microbes from the Xiamen Sea Area in(More)
  • 1