Learn More
Sesame is an important oil crop, but limited transcriptomic and genomic data are currently available. This information is essential to clarify the fatty acid and lignan biosynthesis molecular mechanism. In addition, a shortage of sesame molecular markers limits the efficiency and accuracy of genetic breeding. High-throughput transcriptomic sequencing is(More)
Strategies used by the CNS to optimize arm movements in terms of speed, accuracy, and resistance to fatigue remain largely unknown. A hypothesis is studied that the CNS exploits biomechanical properties of multijoint limbs to increase efficiency of movement control. To test this notion, a novel free-stroke drawing task was used that instructs subjects to(More)
Two protocols of plant regeneration for cotton were adopted in this study, namely, 2, 4-D and kinetin hormone combination and IBA and kinetin hormone combination. Twenty-eight embryogenic cell lines via somatic embryogenesis and 67 regenerated plants from these embryogenic calli were selected and used for random amplified polymorphic DNA (RAPD), simple(More)
Sequence-related amplified polymorphism (SRAP) combined with SSRs, RAPDs, and RGAPs was used to construct a high density genetic map for a F2 population derived from the cross DH962 (G. hirsutum accession) × Jimian5 (G. hirsutum cultivar). A total of 4,096 SRAP primer combinations, 6310 SSRs, 600 RAPDs, and 10 RGAPs produced 331, 156, 17 and 2 polymorphic(More)
Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored. Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of(More)
MOTIVATION In both genome-wide association studies (GWAS) and pathway analysis, the modest sample size relative to the number of genetic markers presents formidable computational, statistical and methodological challenges for accurately identifying markers/interactions and for building phenotype-predictive models. RESULTS We address these objectives via(More)
Oilseed crops are used to produce vegetable oil. Sesame (Sesamum indicum), an oilseed crop grown worldwide, has high oil content and a small diploid genome, but the genetic basis of oil production and quality is unclear. Here we sequence 705 diverse sesame varieties to construct a haplotype map of the sesame genome and de novo assemble two representative(More)
In the past decade, several molecular maps of cotton have been constructed using diverse DNA molecular markers and mapping populations. In this study, an interspecific linkage map of allotetraploid cotton was developed using a BC1 population ((Gossypium hirsutum x G. barbadense) x G. hirsutum). This map was genome-wide and was based entirely on simple(More)
Sesame (Sesamum indicum), an important oil crop, is widely grown in tropical and subtropical regions. It provides part of the daily edible oil allowance for almost half of the world's population. A limited number of co-dominant markers has been developed and applied in sesame genetic diversity and germplasm identity studies. Here we report for the first(More)
Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable(More)