Learn More
TSP50 (testes-specific protease 50) is a testis-specific expression protein, which is expressed abnormally at high levels in breast cancer tissues. This makes it an attractive molecular marker and a potential target for diagnosis and therapy; however, the biological function of TSP50 is still unclear. In the present study, we show that overexpression of(More)
Interferon-gamma (IFN-gamma) and interleukin-6 (IL-6) are multifunctional cytokines that regulate immune responses, cell proliferation, and tumour development and progression, which frequently have functionally opposing roles. The cellular responses to both cytokines are activated via the Janus kinase/signal transducer and activator of transcription(More)
BACKGROUND Testes-specific protease 50 (TSP50), a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO) cells has been found(More)
SLC5A8 (Solute carrier family 5, member 8), proposed to be a potential tumor suppressor gene, is down-regulated by epigenetic changes in some colorectal cancer cells, and ectopic expression of SLC5A8 in SLC5A8-deficient colon cancer cell lines leads to suppression of the colony-forming ability of these cells. Activin A, a member of the transforming growth(More)
Earlier studies identified testes-specific protease 50 (TSP50), which encodes a threonine protease, and showed that it was abnormally reactivated in many breast cancer biopsies. Further, it was shown to be negatively regulated by the p53 gene. However, little is known about the biological function of TSP50. In this study, we applied RNA interference to(More)
Identification of epitopes which invoke strong humoral responses is an essential issue in the field of immunology. Localizing epitopes by experimental methods is expensive in terms of time, cost, and effort; therefore, computational methods feature for its low cost and high speed was employed to predict B-cell epitopes. In this paper, we review the recent(More)
The prediction of conformational B-cell epitopes is one of the most important goals in immunoinformatics. The solution to this problem, even if approximate, would help in designing experiments to precisely map the residues of interaction between an antigen and an antibody. Consequently, this area of research has received considerable attention from(More)
Epitope prediction based on random peptide library screening has become a focus as a promising method in immunoinformatics research. Some novel software and web-based servers have been proposed in recent years and have succeeded in given test cases. However, since the number of available mimotopes with the relevant structure of template-target complex is(More)
In this paper, a novel quantum swarm evolutionary algorithm (QSE) is presented based on the quantum-inspired evolutionary algorithm (QEA). A new definition of Q-bit expression called quantum angle is proposed, and an improved particle swarm optimization (PSO) is employed to update the quantum angles automatically. The simulated results in solving 0–1(More)