Learn More
Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this(More)
Continuous arterial spin labeling (CASL) was used to obtain an index of cerebral blood flow (ICBF) in the normal mouse brain and in an orthotopic mouse model of human U87 high-grade glioma at 8.5 T. Under the assumption of a constant tissue:blood partition coefficient for water in different tissues, the mean ICBF (n = 14) was found to be 50 +/- 9(More)
A unique characteristic of neural stem cells is their capacity to track glioma cells that have migrated away from the main tumor mass into the normal brain parenchyma. PEX, a naturally occurring fragment of human metalloproteinase-2, acts as an inhibitor of glioma and endothelial cell proliferation, migration, and angiogenesis. In the present study, we(More)
Assessment of therapy efficacy using animal models of tumorigenic cancer requires the ability to accurately measure changes in tumor volume over the duration of disease course. In order to be meaningful, in vivo tumor volume measurements by non-invasive techniques must correlate with tumor volume measurements from endpoint histological analysis. Tumor(More)
Mutations in the BRAF and KRAS genes occur in approximately 1% to 2% and 20% to 30% of non-small-cell lung cancer patients, respectively, suggesting that the mitogen-activated protein kinase (MAPK) pathway is preferentially activated in lung cancers. Here, we show that lung-specific expression of the BRAF V600E mutant induces the activation of extracellular(More)
Targeting active angiogenesis, which is a major hallmark of malignant gliomas, is a potential therapeutic approach. For effective inhibition of tumor-induced neovascularization, antiangiogenic compounds have to be delivered in sufficient quantities over a sustained period of time. The short biological half-life of many antiangiogenic inhibitors and the(More)
In hyperpolarized xenon magnetic resonance imaging (HP (129)Xe MRI), the inhaled spin-1/2 isotope of xenon gas is used to generate the MR signal. Because hyperpolarized xenon is an MR signal source with properties very different from those generated from water-protons, HP (129)Xe MRI may yield structural and functional information not detectable by(More)
Because there is no background signal from xenon in biological tissue, and because inhaled xenon is delivered to the brain by blood flow, we would expect a perfusion deficit, such as is seen in stroke, to reduce the xenon concentration in the region of the deficit. Thermal polarization yields negligible xenon signal relative to hyperpolarized xenon;(More)
As another step toward extracting quantitative information from hyperpolarized 3He MRI, airway diameters in humans were measured from projection images and multislice images of the lungs. Values obtained were in good agreement with the Weibel lung morphometry model. The measurement of airway caliber can now be achieved without the use of ionizing radiation.(More)
RATIONALE AND OBJECTIVES The authors present their initial experience using a 3-T whole-body scanner equipped with a 128-channel coil applied to lung motion assessment. Recent improvements in fast magnetic resonance imaging (MRI) technology have enabled several trials of free-breathing three-dimensional (3D) imaging of the lung. A large number of image(More)