Learn More
Thermal denaturation of bovine serum albumin (BSA) is analyzed from differential scanning calorimetry (DSC) and Raman spectroscopy investigations. DSC curves exhibit a marked dependence on protein concentration. BSA thermal denaturation becomes broader and bimodal, and the temperature of denaturation increases with increasing protein concentration. Raman(More)
Low-frequency Raman investigations were carried out upon pressurizing and grinding both crystalline forms of anhydrous caffeine at room temperature. These investigations have led to the detection of metastable states under stress. Upon moderated hydrostatic compression, only form I transform into a metastable state characterized by a Raman band-shape(More)
The phase transition of a model API, caffeine Form I, was studied during tableting process monitored with an instrumented press. The formulation used had a plastic flow behavior according to the Heckel model in the compression pressure range of 70-170 MPa. The quantitative methods of analysis used were Differential Scanning Calorimetry (DSC) and low(More)
Pressure denaturation of lysozyme dissolved in H(2)O and D(2)O was analyzed using Raman investigations in a wide frequency range. The simultaneous analysis of regions corresponding to the molecular fingerprint of the protein (500-1800 cm(-1)), and the low- (50-450 cm(-1)) and high- (2600-3800 cm(-1)) frequency spectra, allow us to probe protein denaturation(More)
We show in this paper the contribution of the whole Raman spectrum including the phonon spectrum, to detect, identify and characterize polymorphic forms of molecular compounds, and study their stability and transformation. Obtaining these kinds of information is important in the area of pharmaceutical compounds. Two different polymorphic systems are(More)
Raman investigations were performed in situ during freeze-drying of two model proteins, lysozyme and chymotrypsinogen. The structures of proteins dissolved in 0-30 wt % solutions of trehalose in D2 O were monitored with the fingerprint (800-1800 cm(-1) ) spectrum, simultaneously with freezing, ice sublimation, and water desorption analyzed in the O-D(More)
Low- and high-frequency Raman experiments in the 5-200 cm(-1) and 600-1800 cm(-1) ranges were carried out in the crystalline and amorphous states of ibuprofen. Low-frequency investigations indubitably reveal the existence of a molecular disorder in the metastable phase (phase II), through the observation of quasielastic contribution below 30 cm(-1), and the(More)
Sugar-induced thermostabilization of lysozyme was analyzed by Raman scattering and modulated differential scanning calorimetry investigations, for three disaccharides (maltose, sucrose, and trehalose) characterized by the same chemical formula (C(12)H(22)O(11)). This study shows that trehalose is the most effective in stabilizing the folded secondary(More)
The low-frequency (omega<400 cm(-1)) vibrational properties of lysozyme in aqueous solutions of three well-known protecting sugars, namely, trehalose, maltose, and sucrose, have been investigated by means of complementary Raman scattering experiments and molecular dynamics simulations. The comparison of the Raman susceptibility chi(")(omega) of(More)
The effect of urea and guanidine hydrochloride (GuHCl) on lysozyme stability has been investigated using activity measurements, microcalorimetry and Raman spectroscopy in the low-frequency and amide I regions. Raman investigations on lysozyme dissolved in H(2)O and D(2)O in the presence of up to 10 M denaturants have revealed direct binding between the(More)