Yann Sweeney

  • Citations Per Year
Learn More
Gaseous neurotransmitters such as nitric oxide (NO) provide a unique and often overlooked mechanism for neurons to communicate through diffusion within a network, independent of synaptic connectivity. NO provides homeostatic control of intrinsic excitability. Here we conduct a theoretical investigation of the distinguishing roles of NO-mediated diffusive(More)
Neural firing rates must be maintained within a stable range in the face of ongoing fluctuations in synaptic activity. This can be achieved through homeostatic intrinsic plasticity. However, here we show that such a mechanism, while successfully regulating neural firing rates, has an adverse effect on a network’s ability to encode and retain memories. This(More)
Intrinsic electrical properties of neurons are controlled by a number of homeostatic mechanisms, among which is the modulation of conductances of voltage-dependent ion channels. One such example is mediated by Nitric Oxide (NO) in principal neurons of the Medial Nucleus of the Trapezoid Body (MNTB) in the auditory brainstem. These act as relay neurons,(More)
  • 1