Learn More
The alkane-assimilating yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates such as n-alkanes, fatty acids, fats and oils for which it has specific metabolic pathways. An overview of the oxidative degradation pathways for alkanes and triglycerides in Y. lipolytica is given, with new insights arising from the recent genome sequencing(More)
Deoxynivalenol (DON), a mycotoxin produced by some Fusarium species, is a frequent contaminant of cereal. In the present study, 24 weanling piglets received either control feed or feed naturally contaminated with DON (2.8 mg/kg) for four weeks. Consumption of contaminated feed significantly reduced the animal weight gain during the first week of the(More)
SCOPE Deoxynivalenol (DON), a mycotoxin produced by Fusarium spp., is toxic to many animal species, with pigs being the most sensitive species to the toxin. The aim of the present study was to determine the effects of DON on pig polymorphonuclear cells (PMNs), the first line of defense against infection. METHODS AND RESULTS PMNs isolated from pig blood(More)
Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. It exhibits several toxic effects including impaired growth and immune dysregulation. Macrophages play pivotal role in the host defense; upon activation, they express several specific cell surface receptors that are important in adhesion and cell(More)
Consumption of food or feed contaminated with fumonisin B(1) (FB(1)), a mycotoxin produced by Fusarium verticillioides, can lead to disease in humans and animals. The present study was conducted to examine the effect of FB1 intake on the intestinal immune system. Piglets were used as a target and as a model species for humans since their gastro-intestinal(More)
Chasmagnathus granulata phosphoenolpyruvate carboxykinase (PEPCK) cDNA from jaw muscle was cloned and sequenced, showing a specific domain to bind phosphoenolpyruvate in addition to the kinase-1 and kinase-2 motifs to bind guanosine triphosphate (GTP) and Mg(2+), respectively, specific for all PEPCKs. In the kinase-1 motifs the GK was changed to RK. The(More)
  • 1