Learn More
Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one in 5,000 newborns. We conducted, to our knowledge, the first genome-wide association study for nonsyndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic case-parent trios of European ancestry (NHW). We found robust associations in a 120-kb region(More)
Premature closure of the sagittal suture occurs as an isolated (nonsyndromic) birth defect or as a syndromic anomaly in combination with other congenital dysmorphologies. The genetic causes of sagittal nonsyndromic craniosynostosis (NSC) remain unknown. Although variation of the dysmorphic (scaphocephaly) skull shape of sagittal NSC cases has been(More)
The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since(More)
Craniosynostosis, a condition that includes the premature fusion of one or multiple cranial sutures, is a relatively common birth defect in humans and the second most common craniofacial anomaly after orofacial clefts. There is a significant clinical variation among different sutural synostoses as well as significant variation within any given single-suture(More)
Bilateral symmetry in vertebrates is imperfect and mild asymmetries are found in normal growth and development. However, abnormal development is often characterized by strong asymmetries. Coronal craniosynostosis, defined here as consisting of premature suture closure and a characteristic skull shape, is a complex trait. The premature fusion of the coronal(More)
OBJECTIVES In this study, we compare root formation in a modern sample of living Portuguese children (n = 521), between 6 and 18 years of age, with that of a similar sample of known sex and age Portuguese child skeletons (n = 114), who lived half a century earlier, to assess secular change in dental maturation. METHODS The roots of seven developing(More)
Bones of the craniofacial skeleton are derived from two distinct cell lineages, cranial neural crest and mesoderm, and articulate at sutures and synchondroses which represent major bone growth sites. Premature fusion of cranial suture(s) is associated with craniofacial dysmorphogenesis caused in part by alteration in the growth potential at sutures and can(More)
FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of(More)
BACKGROUND Craniosynostosis is a condition that includes the premature fusion of one or multiple cranial sutures. Among various craniosynostosis forms, sagittal nonsyndromic craniosynostosis is the most prevalent. Although different gene mutations have been identified in some craniosynostosis syndromes, the cause of sagittal nonsyndromic craniosynostosis(More)
Age estimation of nonadult skeletons from archaeological or forensic contexts has relied heavily on modern schedules of dental formation developed on samples of children of affluent populations. Although genetic factors have been considered to have had the greatest influence on population differences in dental development, increased interest has been placed(More)