Learn More
Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatiotemporal progression of white matter myelination.(More)
The human infant is particularly immature at birth and brain maturation, with the myelination of white matter fibers, is protracted until adulthood. Diffusion tensor imaging offers the possibility to describe non invasively the fascicles spatial organization at an early stage and to follow the cerebral maturation with quantitative parameters that might be(More)
Most of the approaches dedicated to fiber tracking from diffusion-weighted MR data rely on a tensor model. However, the tensor model can only resolve a single fiber orientation within each imaging voxel. New emerging approaches have been proposed to obtain a better representation of the diffusion process occurring in fiber crossing. In this paper, we adapt(More)
The age-related trends of the width and the depth of major cortical sulci were studied in normal adults. Ninety healthy subjects (47 males, 43 females) age 20-82 years were evaluated. Measurements of average sulcal width and depth in 14 prominent sulcal structures per hemisphere were performed with high-resolution anatomical MRI. The average sulcal width(More)
This paper presents a clustering method that detects the fiber bundles embedded in any MR-diffusion based tractography dataset. Our method can be seen as a compressing operation, capturing the most meaningful information enclosed in the fiber dataset. For the sake of efficiency, part of the analysis is based on clustering the white matter (WM) voxels rather(More)
This paper describes a decade-long research program focused on the variability of the cortical folding patterns. The program has developed a framework of using artificial neuroanatomists that are trained to identify sulci from a database. The framework relies on a renormalization of the brain warping problem, which consists in matching the cortices at the(More)
Most of the approaches dedicated to automatic morphometry rely on a point-by-point strategy based on warping each brain toward a reference coordinate system. In this paper, we describe an alternative object-based strategy dedicated to the cortex. This strategy relies on an artificial neuroanatomist performing automatic recognition of the main cortical sulci(More)
Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the(More)
The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological(More)
In temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), ictal discharge spread to the frontal and insulo-perisylvian cortex is commonly observed. The implication of white matter pathways in this propagation has not been investigated. We compared diffusion tensor imaging (DTI) measurements along the uncinate fasciculus (UF), a major tract(More)