Learn More
Normal cognitive development in infants follows a well-known temporal sequence, which is assumed to be correlated with the structural maturation of underlying functional networks. Postmortem studies and, more recently, structural MR imaging studies have described qualitatively the heterogeneous spatiotemporal progression of white matter myelination.(More)
Most of the approaches dedicated to fiber tracking from diffusion-weighted MR data rely on a tensor model. However, the tensor model can only resolve a single fiber orientation within each imaging voxel. New emerging approaches have been proposed to obtain a better representation of the diffusion process occurring in fiber crossing. In this paper, we adapt(More)
The age-related trends of the width and the depth of major cortical sulci were studied in normal adults. Ninety healthy subjects (47 males, 43 females) age 20-82 years were evaluated. Measurements of average sulcal width and depth in 14 prominent sulcal structures per hemisphere were performed with high-resolution anatomical MRI. The average sulcal width(More)
Diffusion magnetic resonance imaging (dMRI) has become an established research tool for the investigation of tissue structure and orientation. In this paper, we present a method for real-time processing of diffusion tensor and Q-ball imaging. The basic idea is to use Kalman filtering framework to fit either the linear tensor or Q-ball model. Because the(More)
The development of cognitive functions during childhood relies on several neuroanatomical maturation processes. Among these processes is myelination of the white matter pathways, which speeds up electrical conduction. Quantitative indices of such structural processes can be obtained in vivo with diffusion tensor imaging (DTI), but their physiological(More)
Most of the approaches dedicated to automatic morphometry rely on a point-by-point strategy based on warping each brain toward a reference coordinate system. In this paper, we describe an alternative object-based strategy dedicated to the cortex. This strategy relies on an artificial neuroanatomist performing automatic recognition of the main cortical sulci(More)
This paper presents a clustering method that detects the fiber bundles embedded in any MR-diffusion based tractography dataset. Our method can be seen as a compressing operation, capturing the most meaningful information enclosed in the fiber dataset. For the sake of efficiency, part of the analysis is based on clustering the white matter (WM) voxels rather(More)
Components of the corticocerebellar circuit and the midbrain individually play a central role in addictive processes and have been associated with altered volumes and impairment of cognitive flexibility in alcohol-dependent subjects. The microstructure of white matter bundles composing the corticocerebellar network and passing through the midbrain was(More)
A basic issue in neurosciences is to look for possible relationships between brain architecture and cognitive models. The lack of architectural information in magnetic resonance images, however, has led the neuroimaging community to develop brain mapping strategies based on various coordinate systems without accurate architectural content. Therefore, the(More)
Although Huntington's disease is largely considered to be a subcortical disease, there is no clear consensus on whether all deep grey matter loss is a direct downstream consequence of the massive degeneration of the medium-size spiny neurons in the striatum. Our aim was to characterise in vivo such preferential degeneration by analysing various distinct(More)