Learn More
Association mapping is a powerful approach for dissecting the genetic architecture of complex quantitative traits using high-density SNP markers in maize. Here, we expanded our association panel size from 368 to 513 inbred lines with 0.5 million high quality SNPs using a two-step data-imputation method which combines identity by descent (IBD) based(More)
Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing(More)
Cotton (Gossypium spp.) is one of the major fibre crops of the world. Although it is classified as salt tolerant crop, cotton growth and productivity are adversely affected by high salinity, especially at germination and seedling stages. Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help(More)
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and(More)
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical(More)
Drought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance. A total of 524 nsSNPs that(More)
The capacity for ion compartmentalization among different tissues and cells is the key mechanism regulating salt tolerance in plants. In this study, we investigated the ion compartmentalization capacity of two upland cotton genotypes with different salt tolerances under salt shock at the tissue, cell and molecular levels. We found that the leaf glandular(More)
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were(More)
Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments(More)
CC-BY-NC 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not. ABSTRACT Characterization of genetic variations in maize has been challenging, mainly due to deterioration of collinearity between individual genomes in the species and the fact the B73 genome used as(More)