Learn More
Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing(More)
Association mapping is a powerful approach for dissecting the genetic architecture of complex quantitative traits using high-density SNP markers in maize. Here, we expanded our association panel size from 368 to 513 inbred lines with 0.5 million high quality SNPs using a two-step data-imputation method which combines identity by descent (IBD) based(More)
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical(More)
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and(More)
Drought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance. A total of 524 nsSNPs that(More)
Cotton (Gossypium spp.) is one of the major fibre crops of the world. Although it is classified as salt tolerant crop, cotton growth and productivity are adversely affected by high salinity, especially at germination and seedling stages. Identification of genes and miRNAs responsible for salt tolerance in upland cotton (Gossypium hirsutum L.) would help(More)
Drug-induced liver injury (DILI) is a leading cause of discontinuation of new drug approval or withdrawal of marketed medicine based on safety due to organ vulnerability. The aim of this research is to investigate the potential abilities of four different in vitro cell models (L-02, HepG2, HepaRG, and hiHeps cell lines) in assessing marketed drugs labeled(More)
Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were(More)
Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments(More)
Phosphorus (P) deficiency is one of the major limiting factors in maize production in many developing countries. This experiment was conducted to evaluate multiple low-P tolerance criteria and identify the suitable maize germplasm for our future low-P tolerance breeding. A total of 456 diverse maize inbreds were evaluated for low-P tolerance at seedling(More)