Learn More
Tissues can grow in a particular direction by controlling the orientation of cell divisions. This phenomenon is evident in the developing Drosophila wing epithelium, where the tissue becomes elongated along the proximal-distal axis. We show that orientation of cell divisions in the wing requires planar polarization of an atypical myosin, Dachs. Our evidence(More)
BACKGROUND The development of the Drosophila eye imaginal disc requires complex epithelial rearrangements. Cells of the morphogenetic furrow are apically constricted and this leads to a physical indentation in the epithelium. Posterior to the furrow, cells start to rearrange into distinct clusters and eventually form a precisely patterned array of(More)
Actin is a highly conserved protein important for many cellular functions including motility, contraction in muscles and intracellular transport. Many eukaryotic genomes encode multiple actin protein isoforms that differ from each other by only a few residues. We addressed whether the sequence differences between actin paralogues in one species affect their(More)
Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their(More)
Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we(More)
The highly robust control of cell cycles in eukaryotes enables cells to undergo strictly ordered G1/S/G2/M phases and respond adaptively to regulatory signals; however the nature of the robustness remains obscure. Specifically, it is unclear whether events of signaling should be strictly ordered and whether some events are more robust than others. To(More)
Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level(More)
MOTIVATION Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to(More)
  • 1