Learn More
CHOP is a non-ER localized transcription factor that is induced by a variety of adverse physiological conditions including ER stress. Accumulation of unfolded proteins in the ER activates an unfolded protein response pathway that targets both ER resident chaperones (e.g. BiP) and CHOP. Hence, it is unclear if CHOP induction during ER stress occurs through(More)
Having accumulated mutations that overcome cell-cycle and apoptotic checkpoints, the main obstacle to survival faced by a cancer cell is the restricted supply of nutrients and oxygen. These conditions impinge on protein folding in the endoplasmic reticulum and activate a largely cytoprotective signalling pathway called the unfolded protein response.(More)
Transient protein synthesis inhibition is an important protective mechanism used by cells during various stress conditions including endoplasmic reticulum (ER) stress. This response centers on the phosphorylation state of eukaryotic initiation factor (eIF)-2 alpha, which is induced by kinases like protein kinase R-like ER kinase (PERK) and GCN2 to suppress(More)
Nearly all resident proteins of the organelles along the secretory pathway, as well as proteins that are expressed at the cell surface or secreted from the cell, are first co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Immediately after entering the ER, they are often modified with N-linked(More)
The mammalian unfolded protein response (UPR) includes two major branches: one(s) specific to ER stress (Ire1/XBP-1 and ATF6-dependent), and one(s) shared by other cellular stresses (PERK/eIF-2alpha phosphorylation-dependent). Here, we demonstrate that the ER-localized protein Herp represents a second target, in addition to CHOP, that is dually regulated by(More)
Wastewater treatment processes are of growing interest as a potential means to limit the dissemination of antibiotic resistance. This study examines the response of nine representative antibiotic resistance genes (ARGs) encoding resistance to sulfonamide (sulI, sulII), erythromycin (erm(B), erm(F)), and tetracycline (tet(O), tet(W), tet(C), tet(G), tet(X))(More)
We present a discriminative learning method to improve the consistency of translations in phrase-based Statistical Machine Translation (SMT) systems. Our method is inspired by Translation Memory (TM) systems which are widely used by human translators in industrial settings. We constrain the translation of an input sentence using the most similar(More)