Learn More
With the continuous increase in fossil fuels consumption and the rapid growth of atmospheric CO2 concentration, the harmonious state between human and nature faces severe challenges. Exploring green and sustainable energy resources and devising efficient methods for CO2 capture, sequestration and utilization are urgently required. Converting CO2 into(More)
Metastasis causes most deaths from cancer yet mechanistic understanding and therapeutic options remain limited. Overexpression of the phosphatase PRL-3 (phosphatase of regenerating liver) is associated with metastasis of colon cancer. Here, we show that PRL-3 is a direct target of signaling by TGFβ, which is broadly implicated in progression and metastasis.(More)
The adsorption of glucose oxidase (GOD) on graphene oxide (GO) nanoparticles without using any cross-linking reagents and/or additional surface modification was studied. Results of Fourier-transform infrared and ultraviolet-visible absorption spectroscopy confirmed that GOD was successfully immobilized on GO surface. The obtained immobilized GOD showed a(More)
A novel enzyme membrane reactor with sandwich structure has been developed by confining glucosidase between two sheets of ultrafiltration membranes to effectively convert maltose to isomaltooligosaccharides (IMOs). The hydrophilic ultrafiltration membranes, which were prepared by phase inversion method using PES as bulk polymer and Pluronic F127 as both(More)
Candida antarctica lipase B (CALB) was immobilized on the macroporous resin by physical adsorption in organic medium. The immobilization was performed in 5 mL isooctane, and the immobilization conditions were optimized. The results were achieved with the mass ratio of lipase to support 1:80, the buffer of pH 6.0, initial addition of PBS 75 microL, and(More)
A novel catalytic system of Pickering emulsion stabilized by lipase-containing periodic mesoporous organosilica was constructed (named LP@PE) and used as biocatalyst for biodiesel production. The reaction parameters were optimized and the optimum conditions were as follows: the water fraction 0.65%, molar ratio of ethanol to oleic acid 2:1, immobilized(More)
In this study, graphene oxide (GO) was modified with dopamine to create a matrix for enzyme immobilization. Dopamine can self-polymerize to get polydopamine (PDA) and coated on GO surface. At the same time, GO was reduced to get PDA/rGO biocomposite. The PDA/rGO may offer adherent surface for enzyme immobilization. Glucose oxidase (GOD), an oxidoreductase,(More)
With the aim to provide a highly stable and active biocatalyst, cross-linked enzyme aggregates (CLEAs) of lipase Candida sp. 99-125 were prepared in three-dimensionally ordered macroporous silica materials (CLEAs-LP@3DOM-SiO2). Lipase Candida sp. 99-125 was first precipitated in the pores of 3DOM SiO2 (named EAs-LP@3DOM-SiO2), and further cross-linked by(More)
Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The(More)
The kinetics of lipase-catalyzed interesterification synthesis of L-ascorbyl lactate was studied. To determine the enzyme kinetic constants of the interesterification, a three-factor and five-level central composite design was used. The factors studied were ethyl lactate concentration, reaction temperature (T), and water content (w). Moreover, a statistical(More)