Yanhui Zhou

Learn More
This paper reported the preparation and antioxidant capacities of element selenium nanoparticles (nanoSe(0))-ascorbic acid (Vc) sol and nanSe(0)/Vc/selenocystine (SeCys) sol-gel compounds. NanoSe(0)-Vc sol was prepared by reduction of selenious dioxide (SeO2) with Vc. In the nanoSe(0)-Vc sol, highly concentrated Vc was also used as a modifier to modulate(More)
The interaction of ruthenium (II) complex [Ru(bpy)2(mal)]2+ (RBM) and [Ru(phen)2(mal)]2+ (RPM) (bpy = 2, 2-bipyridine, phen = 1,10-phenanthroline, mal = malonyl carboxylate) with human serum albumin (HSA) has been investigated by using fluorescence, UV absorption and circular dichroism (CD) spectroscopy approaches. A strong fluorescence quenching reaction(More)
Anti-angiogenesis is an effective strategy for cancer treatment because uncontrolled tumor growth depends on tumor angiogenesis and sufficient blood supply. Thus, blocking angiogenesis could be a strategy to arrest tumor growth. The function and mechanism of luminescent ruthenium-modified selenium nanoparticles (Ru-SeNPs) in angiogenesis have not been(More)
Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25-35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25-35 (20μM) treatment for 24h caused apoptotic cell death, as evidenced by significant cell viability(More)
Alzheimer's disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ(More)
Functionalization can promote the uptake of nanoparticles into cancer cells via receptor-mediated endocytosis, enabling them to exert their therapeutic effects. In this paper, epigallocatechin gallate (EGCG), which has a high binding affinity to 67 kDa laminin receptor (67LR) overexpressed in HCC cells, was employed in the present study to functionalized(More)
Here we reported the high tumor targeting efficacy of luminescent Ru(II)-thiols protected selenium nanoparticles (Ru-MUA@Se). We have shown that a dual-target inhibitor Ru-MUA@Se directly suppress the tumor growth but also block blood-vessel growth. We also determined that the nanoparticles entered the cells via clathrin-mediated endocytosis pathway. In a(More)
Two arene ruthenium complexes [Ru(η(6)-C(6)H(6))(p-MOPIP)Cl](+)1 and [Ru(η(6)-C(6)H(6))(p-CFPIP)Cl](+)2, where p-MOPIP = 2-(4-methoxyphenyl)-imidazo[4,5f][1,10] phenanthroline and p-CFPIP = 2-(4-trifluoromethylphenyl)-imidazo[4,5f][1,10] phenanthroline, were prepared and the interactions of these compounds with DNA oligomers 5'-G3(T2AG3)3-3'(HTG21) have(More)
Angiogenesis is crucial for tumor growth. Thus, inhibiting angiogenesis represents a promising avenue for preventing tumor growth. This study investigated the anti-angiogenesis and anti-tumor effects of 8-hydroxyquinoline ruthenium(II) complexes [Ru(bpy)2(8-HQ)](+) (BQ) and [Ru(phen)2(8-HQ)](+) (PQ). The results showed that both compounds, especially PQ,(More)
MicroRNA (miR)-29a has been implicated in non-small cell lung cancer (NSCLC), but the mechanism remains largely unclear. LASP1, a cAMP- and cGMP-dependent signaling protein, was recently found to promote proliferation and aggressiveness in NSCLC. However, the regulatory mechanism of LASP1 expression in NSCLC, as well as the relationship between LASP1 and(More)