Yanhui Zhou

Learn More
Anti-angiogenesis is an effective strategy for cancer treatment because uncontrolled tumor growth depends on tumor angiogenesis and sufficient blood supply. Thus, blocking angiogenesis could be a strategy to arrest tumor growth. The function and mechanism of luminescent ruthenium-modified selenium nanoparticles (Ru-SeNPs) in angiogenesis have not been(More)
The interaction of ruthenium (II) complex [Ru(bpy)2(mal)]2+ (RBM) and [Ru(phen)2(mal)]2+ (RPM) (bpy = 2, 2-bipyridine, phen = 1,10-phenanthroline, mal = malonyl carboxylate) with human serum albumin (HSA) has been investigated by using fluorescence, UV absorption and circular dichroism (CD) spectroscopy approaches. A strong fluorescence quenching reaction(More)
This paper reported the preparation and antioxidant capacities of element selenium nanoparticles (nanoSe(0))-ascorbic acid (Vc) sol and nanSe(0)/Vc/selenocystine (SeCys) sol-gel compounds. NanoSe(0)-Vc sol was prepared by reduction of selenious dioxide (SeO2) with Vc. In the nanoSe(0)-Vc sol, highly concentrated Vc was also used as a modifier to modulate(More)
Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ25-35-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ25-35 (20μM) treatment for 24h caused apoptotic cell death, as evidenced by significant cell viability(More)
Here we reported the high tumor targeting efficacy of luminescent Ru(II)-thiols protected selenium nanoparticles (Ru-MUA@Se). We have shown that a dual-target inhibitor Ru-MUA@Se directly suppress the tumor growth but also block blood-vessel growth. We also determined that the nanoparticles entered the cells via clathrin-mediated endocytosis pathway. In a(More)
Alzheimer's disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ(More)
Two ruthenium(II) complexes (Ru-complexes) were synthesized and characterized in this study. The selectivity and ability of the complexes to interact with bcl-2 DNA were investigated here. It turned out that [Ru(ip)3](ClO4)2·2H2O (complex 1, ip = 1H-iminazole [4,5-f][1,10] phenanthroline) could induce and stabilize the formations of G-quadruplexes more(More)
Metal ions promote Alzheimer's disease (AD) pathogenesis by accelerating amyloid-β (Aβ) aggregation and inducing formation of neurotoxic reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Although metal chelators can block these effects, their therapeutic potential is marred by their inability to cross the blood-brain barrier (BBB) and by their(More)
Functionalization can promote the uptake of nanoparticles into cancer cells via receptor-mediated endocytosis, enabling them to exert their therapeutic effects. In this paper, epigallocatechin gallate (EGCG), which has a high binding affinity to 67 kDa laminin receptor (67LR) overexpressed in HCC cells, was employed in the present study to functionalized(More)
Two arene ruthenium complexes [Ru(η(6)-C(6)H(6))(p-MOPIP)Cl](+)1 and [Ru(η(6)-C(6)H(6))(p-CFPIP)Cl](+)2, where p-MOPIP = 2-(4-methoxyphenyl)-imidazo[4,5f][1,10] phenanthroline and p-CFPIP = 2-(4-trifluoromethylphenyl)-imidazo[4,5f][1,10] phenanthroline, were prepared and the interactions of these compounds with DNA oligomers 5'-G3(T2AG3)3-3'(HTG21) have(More)