Learn More
Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced(More)
Electrocatalyst for oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications and energy-intensive industries. The design and synthesis of highly active ORR catalysts with strong durability at low cost is extremely desirable but remains challenging. Here, we used a simple two-step method to synthesize cobalt oxide/carbon(More)
Existence of homoclinic orbits in the cubic nonlinear Schrödinger equation under singular perturbations is proved. Emphasis is placed upon the regularity of the semi-group e ǫt∂ 2 x at ǫ = 0. This article is a substantial generalization of [3], and motivated by the effort of Dr. Zeng [9] [8]. The mistake of Zeng in [8] is corrected with a normal form(More)
Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS(2) nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS(2)/RGO hybrid material possessed nanoscopic few-layer MoS(2)(More)
We report the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles. The PEG and graphene coating layers are important to accommodating volume expansion of the coated sulfur particles during discharge,(More)
Oxygen reduction reaction catalysts based on precious metals such as platinum or its alloys are routinely used in fuel cells because of their high activity. Carbon-supported materials containing metals such as iron or cobalt as well as nitrogen impurities have been proposed to increase scalability and reduce costs, but these alternatives usually suffer from(More)
We report the high capacity and rate capability of mesoporous Co3O4 nanowire (NW) arrays as anodes in Li ion batteries. At a current of 1C, the NW arrays maintain a capacity of 700 mAh/g after 20 discharge/charge cycles. When the current is increased to 50C, 50% of the capacity can be retained. With their ease of large area synthesis and superior(More)
Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge(More)