Learn More
Here we analyze the role of the Lhx6 lim-homeobox transcription factor in regulating the development of subsets of neocortical, hippocampal, and striatal interneurons. An Lhx6 loss-of-function allele, which expresses placental alkaline phosphatase (PLAP), allowed analysis of the development and fate of Lhx6-expressing interneurons in mice lacking this(More)
The mammalian hippocampus contains the neural circuitry that is crucial for cognitive functions such as learning and memory. The development of such circuitry is dependent on the generation and correct placement of the appropriate number and types of neurons. Mice lacking function of the LIM homeobox gene Lhx5 showed a defect in hippocampus development.(More)
Lhx6 and Lhx8 transcription factor coexpression in early-born MGE neurons is required to induce neuronal Shh expression. We provide evidence that these transcription factors regulate expression of a Shh enhancer in MGE neurons. Lhx6 and Lhx8 are also required to prevent Nkx2-1 expression in a subset of pallial interneurons. Shh function in early-born MGE(More)
The mammalian pituitary gland originates from two separate germinal tissues during embryonic development. The anterior and intermediate lobes of the pituitary are derived from Rathke's pouch, a pocket formed by an invagination of the oral ectoderm. The posterior lobe is derived from the infundibulum, which is formed by evagination of the neuroectoderm in(More)
Forebrain cholinergic neurons play important roles as striatal local circuit neurons and basal telencephalic projection neurons. The genetic mechanisms that control development of these neurons suggest that most of them are derived from the basal telencephalon where Lhx8, a LIM-homeobox gene, is expressed. Here we report that mice with a null mutation of(More)
The formation of the anterior and intermediate lobes of the pituitary gland is a multi-step process regulated by cell-cell interactions involving a number of signaling pathways and by cascades of cell-intrinsic transcription factors. The LIM-homeodoamin protein Lhx3 has previously been shown to play an essential role in the growth of Rathke's pouch, a(More)
Lhx5 is a member of the LIM homeobox gene family that regulates development of the nervous system. Adult mice generated with a mutation in Lhx5 were found to display absent or disorganized hippocampal neuroanatomy. The pyramidal cell layer in Ammon's horn and the granule cell layer in the dentate gyrus were absent or poorly defined in the hippocampus of(More)
Purkinje cells are one of the major types of neurons that form the neural circuitry in the cerebellum essential for fine control of movement and posture. During development, Purkinje cells also are critically involved in the regulation of proliferation of progenitors of granule cells, the other major type of neurons in the cerebellum. The process that(More)
LIM domain binding protein 1 (LDB1) is a transcriptional co-factor, which interacts with multiple transcription factors and other proteins containing LIM domains. Complete inactivation of Ldb1 in mice resulted in early embryonic lethality with severe patterning defects during gastrulation. Tissue-specific deletions using a conditional knockout allele(More)
Cajal-Retzius (C-R) cells play important roles in the lamination of the mammalian cortex via reelin secretion. The genetic mechanisms underlying the development of these neurons have just begun to be unraveled. Here, we show that two closely related LIM-homeobox genes Lhx1 and Lhx5 are expressed in reelin+ cells in various regions in the mouse telencephalon(More)