Learn More
1. The properties of voltage-dependent calcium channels have been measured in Retzius cells isolated from the central nervous system of the leech and maintained in tissue culture. 2. Macroscopic divalent cation currents were isolated after blocking Na and K currents by bathing the cells with Na-free solutions containing TEA and 4-AP, and internally(More)
Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 ×(More)
Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are(More)
The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72(More)
Seawater acidification and warming resulting from anthropogenic production of carbon dioxide are increasing threats to marine ecosystems. Previous studies have documented the effects of either seawater acidification or warming on marine calcifiers; however, the combined effects of these stressors are poorly understood. In our study, we examined the(More)
In this study, light microscope, scanning and transmission electron microscope, hematoxylin-eosin and fluorescent staining, and mass spectrometry methods were employed to observe the calcium carbonate (CaCO3) crystal formation, hemocyte release and transportation, and hemocyte distribution at the shell regeneration area and to analyse the proteome of(More)
Hemocytes play important roles in the innate immune response and biomineralization of bivalve mollusks. However, the hemocytes in pearl oysters are poorly understood. In the present study, we investigated the morphology and classification of hemocytes in the pearl oyster, Pinctada fucata. Three types of hemocytes were successfully obtained by light(More)
The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus(More)
Mounting evidence suggests that TGFβ/BMP signaling pathway is most likely involved in shell biomineralization in molluscs, but the function of pathway receptors is poorly studied. Here, we cloned and identified two homologous BMP receptor genes, PfBMPR1B and PfBAMBI, from the pearl oyster Pinctada fucata. Real-time quantitative PCR and in situ hybridization(More)
  • 1