Learn More
Sentiment analysis of online documents such as news articles, blogs and microblogs has received increasing attention in recent years. In this article, we propose an efficient algorithm and three pruning strategies to automatically build a word-level emotional dictionary for social emotion detection. In the dictionary, each word is associated with the(More)
The rapid development of social media services has facilitated the communication of opinions through online news, blogs, microblogs/tweets, instant-messages, and so forth. This article concentrates on the mining of readers' emotions evoked by social media materials. Compared to the classical sentiment analysis from writers' perspective, sentiment analysis(More)
Sentiment analysis of online documents such as news articles , blogs and microblogs has received increasing attention. We propose an efficient method of automatically building the word-emotion mapping dictionary for social emotion detection. In the dictionary, each word is associated with the distribution on a series of human emotions. In addition, three(More)
The rapid development of social media services has been a great boon for the communication of emotions through blogs, microblogs/tweets, instant-messaging tools, news portals, and so forth. This paper is concerned with the detection of emotions evoked in a reader by social media. Compared to classical sentiment analysis conducted from the writer's(More)
With the development of the Internet, user-generated data has been growing tremendously in Web 2.0 era. Facing such a big volume of resources in folksonomy, people need a method of fast exploration and indexing to find their demanded data. To achieve this goal, contextual information is indispensable and valuable to understand user preference and purpose.(More)