Learn More
During apoptosis, the mitochondrial network fragments. Using short hairpin RNAs for RNA interference, we manipulated the expression levels of the proteins hFis1, Drp1, and Opa1 that are involved in mitochondrial fission and fusion in mammalian cells, and we characterized their functions in mitochondrial morphology and apoptosis. Down-regulation of hFis1(More)
We find that Bax, a proapoptotic member of the Bcl-2 family, translocates to discrete foci on mitochondria during the initial stages of apoptosis, which subsequently become mitochondrial scission sites. A dominant negative mutant of Drp1, Drp1K38A, inhibits apoptotic scission of mitochondria, but does not inhibit Bax translocation or coalescence into foci.(More)
We have previously shown that a massive increase in global SUMOylation occurs during torpor in ground squirrels, and that overexpression of Ubc9 and/or SUMO-1 in cell lines and cortical neurons protects against oxygen and glucose deprivation. To examine whether increased global SUMOylation protects against ischemic brain damage, we have generated transgenic(More)
Bcl-x(L) is a potent inhibitor of apoptosis. While Bcl-x(L) can be bound to mitochondria, a substantial fraction, depending on the cell type or tissue, is found in the cytosol of healthy cells. Gel filtration and crosslinking experiments reveal that, unlike monomeric Bax, Bcl-x(L) migrates in a complex of approximately 50 kDa in the cytosol.(More)
Hibernation torpor provides an excellent model of natural tolerance to ischemia. We have previously shown that massive global SUMOylation occurs during hibernation torpor in ground squirrels. We have also shown that overexpression of Ubc9, SUMO-1, or SUMO-2/3 provides protection against ischemic damage in cell lines and cortical neurons exposed to(More)
Hibernating squirrels slow blood flow to a crawl, but sustain no damage to brain or other tissues. This phenomenon provides an excellent model of natural tolerance to ischemia. Small ubiquitin-like modifier (SUMO) is a 100-residue peptide that modifies other proteins by being attached to the epsilon amino group of specific lysine residues. The discovery of(More)
The molecular mechanisms underlying hypothermic neuroprotection have yet to be fully elucidated. Herein we demonstrate that global SUMOylation, a form of post-translational modification with the Small Ubiquitin-like MOdifer, participates in the multimodal molecular induction of hypothermia-induced ischemic tolerance. Mild (32°C) to moderate (28°C)(More)
The benefits as well as mechanisms of hypothermia in brain injuries are actively studied at the bench and in the clinic. However, methods used in controlling hypothermia vary among laboratories, and usually brain temperatures are not monitored directly in animals due to the need for an invasive procedure. Here we show a method, water immersion technique,(More)
The putative neuroprotective properties of various flavonoids have long been reported. Among this class of chemicals, quercetin, a major flavone/flavonol naturally occurring in plants, deserves focused attention because of the myriad of beneficial effects observed in various in vitro and in vivo models of central nervous system damage/degeneration. However,(More)
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we(More)