Learn More
In the present study, we examined the role and the mechanism of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) activation in zinc-induced cell death in cortical culture. After brief exposure to 400 microM zinc, cortical cells exhibited DNA fragmentation, increased poly(ADP-ribosyl)ation, and decreased levels of nicotinamide(More)
Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc(More)
Depletion of intracellular zinc by N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces p53-mediated protein synthesis-dependent apoptosis of mouse cortical neurons. Here, we examined the requirement for poly(ADP-ribose) polymerase (PARP)-1 as an upstream regulator of p53 in zinc depletion-induced neuronal apoptosis. First, we found that(More)
Adequate assessment of plaque deposition levels in the brain of mouse models of Alzheimer disease (AD) is required in many core issues of studies on AD, including studies on the mechanisms underlying plaque pathogenesis, identification of cellular factors modifying plaque pathology, and developments of anti-AD drugs. The present study was undertaken to(More)
Most biological effects of tissue plasminogen activator (tPA), such as fibrinolysis, are mediated by its protease activity. Recent studies, however, have demonstrated that tPA also has several protease-independent effects such as: neuroprotection, microglial activation, and promoting LTP formation. In order to gain a better understanding of how tPA affects(More)
Cerebral amyloid angiopathy (CAA) is common in patients with Alzheimer's disease (AD) and may contribute to cerebral hemorrhage. We previously demonstrated that tissue plasminogen activator (tPA) and plasminogen (PLG) accumulated at the periphery of compact amyloid-cored plaques and in the walls of CAA-containing blood vessels in the brains of Tg2576 mice,(More)
Although the tissue plasminogen activator (tPA)/plasminogen/plasmin proteolytic system is thought to modulate the catabolism of amyloid-beta (Abeta), in vivo evidence remains insufficient. In the brain of human amyloid precursor protein transgenic Tg2576 mice, we found co-accumulation of tPA and plasminogen at the periphery of compact amyloid deposits,(More)
Due to the involvement in the ischemic damage in the brain, 5'-adenosine monophosphate-activated protein kinase subunit α2 (AMPK2) serves as a promising target for the development of new medicines for stroke. Despite such a pharmaceutical importance, only a few small-molecule inhibitors have been reported so far. We aim in this study to identify a new class(More)
Most immunosuppressive drugs that support successful allograft survival act by inhibiting or depleting T lymphocytes. Tautomycetin (TMC) is a specific inhibitor of protein phosphatase 1, which has a role in cell-cycle control and T-cell activation and promotes T-cell-specific apoptosis. In this study, we investigated the effect on rat islet transplantation(More)
Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc,(More)