Learn More
We propose to detect abnormal events via a sparse reconstruction over the normal bases. Given a collection of normal training examples, e.g., an image sequence or a collection of local spatio-temporal patches, we propose the sparse reconstruction cost (SRC) over the normal dictionary to measure the normalness of the testing sample. By introducing the prior(More)
In this paper, we present a novel algorithm based on flow velocity field estimation to count the number of pedestrians across a detection line or inside a specified region. We regard pedestrians across the line as fluid flow, and design a novel model to estimate the flow velocity field. By integrating over time, the dynamic mosaics are constructed to count(More)
—Video anomaly detection plays a critical role for intelligent video surveillance. We present an abnormal video event detection system that considers both spatial and temporal contexts. To characterize the video, we first perform the spatio-temporal video segmentation and then propose a new region-based descriptor called " Motion Context " , to describe(More)
BACKGROUND Probabilistic Boolean Networks (PBNs) provide a convenient tool for studying genetic regulatory networks. There are three major approaches to develop intervention strategies: (1) resetting the state of the PBN to a desirable initial state and letting the network evolve from there, (2) changing the steady-state behavior of the genetic network by(More)