Yanfeng Ma

Learn More
Until now, few sp(2) carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two(More)
A novel rigid linear polymer poly(phenyleneethynylene) (PPE) was synthesized and the polymer exhibits good solubility in both water and common organic solvents. The interaction at both ground and excited state between this polymer and single-walled carbon nanotubes (SWNTs) was studied and a water-soluble nano-scale PPE/SWNTs hybrid was fabricated, where the(More)
Time-resolved photoconductivity measurements are carried out on graphene films prepared by using soluble graphene oxide. High photocurrent generation efficiency is observed for these graphene-based films, and the relationships between their photoconductivity and different preparation methods, incident light intensity, external electric field, and photon(More)
High-performance and novel graphene-based electrothermal films are fabricated through a simple yet versatile solution process. Their electrothermal performances are studied in terms of applied voltage, heating rate, and input power density. The electrothermal films annealed at high temperature show high transmittance and display good heating performance.(More)
Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing(More)
Aiming at molecular-based magnets, ferromagnetism of pure carbon-based materials is fundamentally and technologically extremely important for many applications. While it is still not fully understood, many recent theoretical works have suggested that one-atom-thick two-dimensional graphene materials may show ferromagnetism due to the existence of various(More)
Single-walled carbon nanotube (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) of SWNTs. Our results indicate that SWNTs can be used as effective lightweight EMI shielding materials. Composites with greater than 20 dB shielding efficiency were obtained easily. EMI SE was tested in(More)
Although widely investigated, novel electromechanical actuators with high overall actuation performance are still in urgent need for various practical and scientific applications, such as robots, prosthetic devices, sensor switches, and sonar projectors. In this work, combining the properties of unique environmental perturbations-actuated deformational(More)
A novel self-healing material, which was fabricated using few-layered graphene (FG) and thermoplastic polyurethane (TPU) via a facile method, not only exhibits a mechanical enhanced property, but also can be repeatedly healed by various methods including infrared (IR) light, electricity and electromagnetic wave with healing efficiencies higher than 98%.
A series of sp(2) carbon materials with different specific surface area (SSA) and controlled pore size distribution (PSD) were synthesized at large scale through a facile and low-cost method. The SSA and PSD of these carbon materials were controlled by using different carbon sources and preparation methods. With different total and effective SSA (E-SSA) and(More)