Learn More
AIMS Here, we develop a novel cancer treatment modality using mitochondria-targeting, high-fluence, low-power laser irradiation (HF-LPLI) in mouse tumor models and explore the mechanism of mitochondrial injury by HF-LPLI. RESULTS We demonstrated that the initial reaction after photon absorption was photosensitization of cytochrome c oxidase (COX), to(More)
Cyclooxygenase 2 (COX-2) is an inducible enzyme that contributes to the generation of chronic inflammation and the development of cancer, and promotes neoplastic transformation, in response to chemical carcinogens and environmental stresses. In this study, we demonstrated that a sublethal dose photodynamic therapy (PDT) led to inflammatory response mediated(More)
Dihydroartemisinin (DHA) is a unique anti-malarial drug isolated from the plant Artemisia annua. Recently, it has been studied as an alternative modality for cancer therapy, utilizing its reactive oxygen species (ROS) yielding mechanism from interacting with Ferrous ion (Fe (II)). In this work, a novel nanodrug (DHA-GO-Tf) is constructed based on nanoscale(More)
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) is a treatment modality that utilizes photosensitizers activated by light to induce cell death via the formation of singlet oxygen and other free radicals. Although this method has its advantages for tumor treatment, it cannot be well performed for involving so many therapeutic parameters during use. Tumor(More)
Depending on the circumstances, autophagy can be either a protective or damaging cellular process. The role of autophagy in photodynamic therapy (PDT), a photo-chemotherapy that utilizes light to activate a photosensitizer drug to achieve localized cellular damage, has been explored in recent years. It has been reported that autophagy in PDT is(More)
Upconversion nanoparticles have shown to be a promising prospect for biological detection and photodynamic therapy (PDT). The focus of this study was to develop an upconversion nanoparticle modified with a targeting peptide and photosensitizer for near-infrared photodynamic therapy. To produce a tumor-targeting nanophotosensitizer with near-infrared(More)
Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted(More)
Real-time <sup>1</sup>O<inf>2</inf> detection in photodynamic therapy(PDT) is meaningful but difficult. Chemiluminescence(CL) method has a high signal/noise ratio on in vivo <sup>1</sup>O<inf>2</inf> detection. Results indicate there was a remarkable relationship between tumor cure rate and CL.
SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced(More)
An efficient and highly sensitive chemiluminescence (CL) technique is proposed in the current study for detection of low levels of human serum albumin (HSA). Chemiluminescence (CL) produced during interaction between fluoresceinyl cypridina luciferin analog (FCLA)-1O2 can be modified with the presence of HSA. The conventional CL technique uses a quenching(More)