Learn More
Many studies have shown that individuals from invasive populations of many different plant species grow larger than individuals from native populations and that this difference has a genetic basis. This increased vigor in invasive populations is thought to be due to life history tradeoffs, in which selection favors the loss of costly defense traits, thereby(More)
Invasive plants generally escape from specialist herbivores of their native ranges but may experience serious damage from generalists. As a result, invasive plants may evolve increased resistance to generalists and tolerance to damage. To test these hypotheses, we carried out a common garden experiment comparing 15 invasive populations with 13 native(More)
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on plant growth and drought tolerance in seedlings of a promising oilseed crop, Sacha Inchi (Plukenetia volubilis L.), under well-watered or drought conditions. AMF inoculation was applied in four treatments: without AMF inoculation, Glomus(More)
The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments(More)
Different responses of photosystem I and II to chilling. Tropical crops are sensitive to chilling stress, but the underlying physiological mechanisms are unclear. We investigated the maximum quantum yield of PSII (F v/F m), the maximum photo-oxidizable P700 (P m), the energy distribution in PSII, and the redox state of P700 in leaves of seedlings of three(More)
Global environmental change and ongoing biological invasions are the two prominent ecological issues threatening biodiversity worldwide, and investigations of their interaction will aid to predict plant invasions and inform better management strategies in the future. In this study, invasive Eupatorium adenophorum and native congener E. stoechadosmum were(More)
The rapid growth of worldwide energy demands has led to mounting concerns about energy shortages and has promoted the development of biofuels, which are susceptible to climate change. To evaluate the effects of future environmental changes such as CO2 enrichment and water stress on the growth and biodiesel production of bioenergy plants, we exposed Jatropha(More)
To explore the traits contributing to invasiveness of Eupatorium adenophorum and to test the relationship between plasticity of these traits and invasiveness, we compared E. adenophorum with its two native congeners at four irradiances (10%, 23%, 40%, and 100%). The invader showed constantly higher performance (relative growth rate and total biomass) across(More)
To explore the traits contributing to invasion success of Eupatorium adenophorum, a noxious invasive perennial forb throughout the subtropics in Asia, Oceania, Africa, and USA, we compared the differences in ecophysiology and phenology between the invader and native E. japonicum under eight treatment combinations of two irradiances and four nitrogen(More)
  • 1