Learn More
Future sensor networks will be composed of a large number of densely deployed sensors/actuators. A key feature of such networks is that their nodes are untethered and unattended. Consequently, energy efficiency is an important design consideration for these networks. Motivated by the fact that sensor network queries may often be geographical, we design and(More)
Dispersal-Vicariance Analysis (DIVA) is one of the most widely used methods of inferring biogeographic histories. Here we present a simple tool that complements DIVA and uses a Statistical Dispersal-Vicariance Analysis (S-DIVA) to statistically evaluate the alternative ancestral ranges at each node in a tree accounting for phylogenetic uncertainty and(More)
We announce the release of Reconstruct Ancestral State in Phylogenies (RASP), a user-friendly software package for inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees. RASP utilizes the widely used Statistical-Dispersal Vicariance Analysis (S-DIVA), the Dispersal-Extinction-Cladogenesis (DEC)(More)
Networked Infomechanical Systems (NIMS) introduces a new actuation capability for embedded networked sensing. By exploiting a constrained actuation method based on rapidly deployable infrastructure, NIMS suspends a network of wireless mobile and fixed sensor nodes in three-dimensional space. This permits run-time adaptation with variable sensing location,(More)
BACKGROUND AND AIMS The desert legume genus Ammopiptanthus comprises two currently endangered species, A. mongolicus and A. nanus. Genetic variability and genetic differentiation between the two species and within each species were examined. METHODS Inter-simple sequence repeat (ISSR) marker data were obtained and analysed with respect to genetic(More)
Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It(More)
BACKGROUND AND AIMS The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of(More)
• Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the(More)