Learn More
Metformin is among the most widely prescribed drugs for the treatment of type 2 diabetes. Organic cation transporter 1 (OCT1) plays a role in the hepatic uptake of metformin, but its role in the therapeutic effects of the drug, which involve activation of AMP-activated protein kinase (AMPK), is unknown. Recent studies have shown that human OCT1 is highly(More)
Although the platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin have similar DNA-binding properties, only oxaliplatin is active against colorectal tumors. The mechanisms for this tumor specificity of platinum-based compounds are poorly understood but could be related to differences in uptake. This study shows that the human organic(More)
The goal of this study was to determine the effects of genetic variation in the organic cation transporter 1, OCT1, on the pharmacokinetics of the antidiabetic drug, metformin. Twenty healthy volunteers with known OCT1 genotype agreed to participate in the study. Each subject received two oral doses of metformin followed by collection of blood and urine(More)
The blood-brain tumor barrier (BTB) significantly limits delivery of therapeutic concentrations of chemotherapy to brain tumors. A novel approach to selectively increase drug delivery is pharmacologic modulation of signaling molecules that regulate BTB permeability, such as those in cGMP signaling. Here we show that oral administration of sildenafil(More)
Organic anion transporters (OATs) and organic cation transporters (OCTs) mediate the flux of xenobiotics across the plasma membranes of epithelia. Substrates of OATs generally carry negative charge(s) whereas substrates of OCTs are cations. The goal of this study was to determine the domains and amino acid residues essential for recognition and transport of(More)
The solute carrier family 13 member 5 (SLC13A5) is a sodium-coupled transporter that mediates cellular uptake of citrate, which plays important roles in the synthesis of fatty acids and cholesterol. Recently, the pregnane X receptor (PXR, NR1I2), initially characterized as a xenobiotic sensor, has been functionally linked to the regulation of various(More)
The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by(More)
The organic cation transporter, OCT1, is a major hepatic transporter that mediates the uptake of many organic cations from the blood into the liver where the compounds may be metabolized or secreted into the bile. Because OCT1 interacts with a variety of structurally diverse organic cations, including clinically used drugs as well as toxic substances (e.g.,(More)
Multidrug and toxin extrusion 1 (MATE1/solute carrier 47A1) mediates cellular transport of a variety of structurally diverse compounds. Paraquat (PQ), which has been characterized in vitro as a MATE1 substrate, is a widely used herbicide and can cause severe toxicity to humans after exposure. However, the contribution of MATE1 to PQ disposition in vivo has(More)
Among the organs in which the environmental pollutant cadmium causes toxicity, the kidney has gained the most attention in recent years. Numerous studies have sought to unravel the exact pathways by which cadmium enters the renal epithelial cells and the mechanisms by which it causes toxicity in the kidney. The purpose of this review is to present the(More)