Learn More
Incomplete retinal vascularization occurs in both Norrie disease and familial exudative vitreoretinopathy (FEVR). Norrin, the protein product of the Norrie disease gene, is a secreted protein of unknown biochemical function. One form of FEVR is caused by defects in Frizzled-4 (Fz4), a presumptive Wnt receptor. We show here that Norrin and Fz4 function as a(More)
Commissural neurons in the mammalian dorsal spinal cord send axons ventrally toward the floor plate, where they cross the midline and turn anteriorly toward the brain; a gradient of chemoattractant(s) inside the spinal cord controls this turning. In rodents, several Wnt proteins stimulate the extension of commissural axons after midline crossing(More)
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics,(More)
Current understanding suggests that mammalian rod photoreceptors connect only to an ON-type bipolar cell. This rod-specific bipolar cell excites the All amacrine cell, which makes connections to cone-specific bipolar cells of both ON and OFF type; these, in turn, synapse with ganglion cells. Recent work on rabbit retina has shown that rod signals can also(More)
Many ligand/receptor families are known to contribute to axonal growth and targeting. Thus far, there have been no reports implicating Wnts and Frizzleds in this process, despite their large numbers and widespread expression within the CNS. In this study, we show that targeted deletion of the mouse fz3 gene leads to severe defects in several major axon(More)
In the mouse, Frizzled3 (Fz3) and Frizzled6 (Fz6) have been shown previously to control axonal growth and guidance in the CNS and hair patterning in the skin, respectively. Here, we report that Fz3 and Fz6 redundantly control neural tube closure and the planar orientation of hair bundles on a subset of auditory and vestibular sensory cells. In the inner(More)
Two β-secretases, BACE1 and BACE2, are involved in generation of Alzheimer's disease Aβ peptides 1–3. We report that secretion of Aβ peptides (Aβ1–40/42 and Aβ11–40/42) is abolished in cultures of BACE1-deficient embryonic cortical neurons, and that whereas both human and murine BACE1 can cleave either human or murine β-amyloid precursor protein (APP) at(More)
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture(More)
Previous work has identified axonal outgrowth and/or guidance defects in the brain and spinal cord of prenatal Frizzled3 (Fz3)(-/-) mice. To systematically explore the axonal defects in Fz3(-/-) mice and to compare techniques for the global assessment of axon tracts in the developing mouse, we have analyzed wild-type and Fz3(-/-) brains using (1) diffusion(More)
Analysis of cellular morphology is the most general approach to neuronal classification. With the increased use of genetically engineered mice, there is a growing need for methods that can selectively visualize the morphologies of specified subsets of neurons. This capability is needed both to define cell morphologic phenotypes and to mark cells in a(More)