Learn More
We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between(More)
With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a(More)
Direct sequencing of exons 3 to 35 and the exon-intron boundaries of the CACNA1H gene was conducted in 118 childhood absence epilepsy patients of Han ethnicity recruited from North China. Sixty-eight variations have been detected in the CACNA1H gene, and, among the variations identified, 12 were missense mutations and only found in 14 of the 118 patients in(More)
BACKGROUND & AIMS Overexpression of cyclooxygenase-2 (COX-2) is implicated in many steps of cancer development. Single nucleotide polymorphisms (SNPs) in the COX-2 promoter might contribute to differential COX-2 expression and subsequent interindividual variability in susceptibility to cancer. This study sought to identify functional SNPs in the COX-2(More)
We have sequenced the genome of Shigella flexneri serotype 2a, the most prevalent species and serotype that causes bacillary dysentery or shigellosis in man. The whole genome is composed of a 4 607 203 bp chromosome and a 221 618 bp virulence plasmid, designated pCP301. While the plasmid shows minor divergence from that sequenced in serotype 5a, striking(More)
The Shigella bacteria cause bacillary dysentery, which remains a significant threat to public health. The genus status and species classification appear no longer valid, as compelling evidence indicates that Shigella, as well as enteroinvasive Escherichia coli, are derived from multiple origins of E.coli and form a single pathovar. Nevertheless, Shigella(More)
In the mammalian ovary, progressive activation of primordial follicles from the dormant pool serves as the source of fertilizable ova. Menopause, or the end of female reproductive life, occurs when the primordial follicle pool is exhausted. However, the molecular mechanisms underlying follicle activation are poorly understood. We provide genetic evidence(More)
It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach(More)
Mutations in TARDBP, encoding TAR DNA-binding protein-43 (TDP-43), are associated with TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We compared wild-type TDP-43 and an ALS-associated mutant TDP-43 in vitro and in vivo. The A315T mutant enhances neurotoxicity and the formation of aberrant(More)
Bacterial pathogens continue to impose a major threat to public health worldwide in the 21st century. Intensified studies on bacterial pathogenesis have greatly expanded our knowledge about the mechanisms of the disease processes at the molecular level over the last decades. To facilitate future research, it becomes necessary to form a database collectively(More)