Learn More
Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice,(More)
alpha-Scorpion toxins and sea anemone toxins bind to a common extracellular site on the Na+ channel and inhibit fast inactivation. Basic amino acids of the toxins and domains I and IV of the Na+ channel alpha subunit have been previously implicated in toxin binding. To identify acidic residues required for toxin binding, extracellular acidic amino acids in(More)
Apoptotic cell death is important for embryonic development, immune cell homeostasis, and pathogen elimination. Innate immune cells also undergo a very rapid form of cell death termed pyroptosis after activating the protease caspase-1. The hemichannel pannexin-1 has been implicated in both processes. In this study, we describe the characterization of(More)
Voltage-gated sodium channels in brain neurons were found to associate with receptor protein tyrosine phosphatase beta (RPTPbeta) and its catalytically inactive, secreted isoform phosphacan, and this interaction was regulated during development. Both the extracellular domain and the intracellular catalytic domain of RPTPbeta interacted with sodium channels.(More)
The voltage-gated sodium channel is the site of action of more than six classes of neurotoxins and drugs that alter its function by interaction with distinct, allosterically coupled receptor sites. Batrachotoxin (BTX) is a steroidal alkaloid that binds to neurotoxin receptor site 2 and causes persistent activation. BTX binding is inhibited allosterically by(More)
The clinical efficacy of local anesthetic and antiarrhythmic drugs is due to their voltage- and frequency-dependent block of Na+ channels. Quaternary local anesthetic analogs such as QX-314, which are permanently charged and membrane-impermeant, effectively block cardiac Na+ channels when applied from either side of the membrane but block neuronal Na+(More)
Brain sodium channels are complexes of a pore-forming alpha subunit with auxiliary beta subunits, which are transmembrane proteins that modulate alpha subunit function. The newly cloned beta3 subunit is shown to be expressed broadly in neurons in the central and peripheral nervous systems, but not in glia and most nonneuronal cells. Beta1, beta2, and beta3(More)
Cardiac rH1 Na+ channel alpha subunits were expressed in cells of the Chinese hamster lung 1610 cell line by transfection, and a stable cell line expressing cardiac Na+ channels (SNa-rH1) was isolated. Mean Na+ currents of 2.2 +/- 1.0 nA were recorded, which corresponds to a cell surface density of approximately 1-2 channels active at the peak of the Na+(More)
Macrophages respond to cytosolic nucleic acids by activating cysteine protease caspase-1 within a complex called the inflammasome. Subsequent cleavage and secretion of proinflammatory cytokines IL-1beta and IL-18 are critical for innate immunity. Here, we show that macrophages from mice lacking absent in melanoma 2 (AIM2) cannot sense cytosolic(More)
Inactivation of both brain and cardiac Na+ channels is modulated by activation of protein kinase C (PKC) but in different ways. Previous experiments had shown that phosphorylation of serine 1506 in the highly conserved loop connecting homologous domains III and IV (LIII/IV) of the brain Na+ channel alpha subunit is necessary for all effects of PKC. Here we(More)