Learn More
Efficient path-planning algorithms are a crucial issue for modern autonomous underwater vehicles. Classical path-planning algorithms in artificial intelligence are not designed to deal with wide continuous environments prone to currents. We present a novel Fast Marching (FM)-based approach to address the following issues. First, we develop an algorithm we(More)
— In this paper, new tools for obstacle avoidance and path planning for underwater vehicles are presented. The authors technique, based on a level set formulation of the path planning problem, extracts optimal paths from complex and continuous environments in a complete and consistent manner. Fast Marching algorithm is known to be efficient for finding cost(More)
This paper uses advanced time-frequency signal analysis techniques to generate new models for bio-inspired sonar signals. The inspiration comes from the analysis of bottlenose dolphin clicks. These pulses are very short duration, between 50 and 80 micros, but for certain examples we can delineate a double down-chirp structure using fractional Fourier(More)
To date most sonars use narrow band pulses and often only the echo envelope is used for object detection and classification. This paper considers the advantages afforded by bio-inspired sonar for object identification and classification through the analysis and the understanding of the broadband echo structure. Using the biomimetic dolphin based sonar(More)
Multiple Input Multiple Output sonar systems offer new perspectives for target detection and underwater surveillance. In this paper we present an unified formulation for sonar MIMO systems and study their properties in terms of target recognition and imaging. Here we are interested in large MIMO systems. The multiplication of the number of transmitters and(More)
MIMO systems have raised a lot of interest in the recent years. The radar community pointed out the multiple advantages of MIMO systems such as diversity gain for target detection, angle of arrival and Doppler estimation. Coherent processing also allows super-resolution for target localisation. We explore in this paper broadband MIMO sonar systems. In the(More)
The Ocean Systems Laboratory is developing bio-inspired wideband acoustic sensing methods for underwater target detection and tracking. In this paper we explore what we expect to gain from wideband sonar used alone or in combination with ubiquitous sidescan and forward-look imaging sonars. The wideband sensors themselves are based on bottlenose dolphin(More)
Multiple Input Multiple Output (MIMO) sonar systems offer new perspectives for target detection and underwater surveillance. The inherent principle of MIMO relies on transmitting several pulses from different transmitters. The MIMO waveform strategy can vary from applications to applications. But among the waveform space, orthogonal waveforms are arguably(More)
Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms,(More)
Sonar was invented by copying bats' and dolphins' echolocation systems, but the dominant approaches taken to sonar systems today tend to focus on imagery and resolution. In this paper we explore a bio-inspired approach to sonar and sonar signal processing. Conventional sonars use narrowband pulses. The bio-mimetic pulses developed for this work are based on(More)