Learn More
Here, we show that the beta-chemokine receptor CKR-5 serves as a cofactor for M-tropic HIV viruses. Expression of CKR-5 with CD4 enables nonpermissive cells to form syncytia with cells expressing M-tropic, but not T-tropic, HIV-1 env proteins. Expression of CKR-5 and CD4 enables entry of a M-tropic, but not a T-tropic, virus strain. A dual-tropic primary(More)
Macrophage-tropic (M-tropic) HIV-1 strains use the beta-chemokine receptor CCR5, but not CCR2b, as a cofactor for membrane fusion and infection, while the dual-tropic strain 89.6 uses both. CCR5/2b chimeras and mutants were used to map regions of CCR5 important for cofactor function and specificity. M-tropic strains required either the amino-terminal domain(More)
Macrophages are major targets for infection by human immunodeficiency virus type 1 (HIV-1). In addition to their role as productive viral reservoirs, inappropriate activation of infected and uninfected macrophages appears to contribute to pathogenesis. HIV-1 infection requires initial interactions between the viral envelope surface glycoprotein gp120, the(More)
Macrophage/microglia cells are the principal targets for human immunodeficiency virus type 1 (HIV-1) in the central nervous system (CNS). Prototype HIV-1 isolates from the CNS are macrophage (M)-tropic, non-syncytia-inducing (NSI), and use CCR5 for entry (R5 strains), but whether syncytia-inducing (SI) CXCR4-using X4 strains might play a role in(More)
Human immunodeficiency virus type 1 (HIV-1) uses the chemokine receptors CCR5 and CXCR4 for entry. Macrophages and microglia (M/M) are the principal productively infected brain cells in HIV encephalopathy (HIVE), and neuronal injury is believed to result both from direct effects of viral proteins and indirect effects mediated by macrophage activation and(More)
Entry coreceptor use by HIV-1 plays a pivotal role in viral transmission, pathogenesis and disease progression. In many HIV-1 infected individuals, there is an expansion in coreceptor use from CCR5 to include CXCR4, which is associated with accelerated disease progression. While targeting HIV-1 envelope interactions with coreceptor during viral entry is an(More)
A new broad-spectrum powdery mildew resistance allele Pm2c was identified and mapped in Chinese wheat landrace Niaomai. Chinese wheat landrace Niaomai showed resistance to 27 of 28 Chinese Blumeria graminis f. sp tritici (Bgt) races. Genetic analysis of an F2 population and its derived F2:3 families from the cross Niaomai × Mingxian 169 and backcross(More)
Fungi are important pathogens but challenging to enumerate using next-generation sequencing because of low absolute abundance in many samples and high levels of fungal DNA from contaminating sources. Here, we analyze fungal lineages present in the human airway using an improved method for contamination filtering. We use DNA quantification data, which are(More)
HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these(More)
To better understand CXCR4 function on macrophages and the relationship between coreceptor use and macrophage tropism among diverse HIV-1 isolates, we analyzed macrophage pathways involved in Env-mediated fusion, productive HIV-1 infection, and chemokine-elicited signaling. We found that both CXCR4 and CCR5 transduced intracellular signals in(More)