Learn More
E type cyclins (E1 and E2) are believed to drive cell entry into the S phase. It is widely assumed that the two E type cyclins are critically required for proliferation of all cell types. Here, we demonstrate that E type cyclins are largely dispensable for mouse development. However, endoreplication of trophoblast giant cells and megakaryocytes is severely(More)
Breast cancer is the most common malignancy among women. Most of these cancers overexpress cyclin D1, a component of the core cell-cycle machinery. We previously generated mice lacking cyclin D1 using gene targeting. Here we report that these cyclin D1-deficient mice are resistant to breast cancers induced by the neu and ras oncogenes. However, animals(More)
THE D-type cyclins (D1, D2 and D3) are critical governors of the cell-cycle clock apparatus during the G1 phase of the mammalian cell cycle. These three D-type cyclins are expressed in overlapping, apparently redundant fashion in the proliferating tissues. To investigate why mammalian cells need three distinct D-type cyclins, we have generated mice bearing(More)
D-type cyclins (cyclins D1, D2, and D3) are regarded as essential links between cell environment and the core cell cycle machinery. We tested the requirement for D-cyclins in mouse development and in proliferation by generating mice lacking all D-cyclins. We found that these cyclin D1(-/-)D2(-/-)D3(-/-) mice develop until mid/late gestation and die due to(More)
Cyclin E is critical for the advance of cells through the G1 phase of their growth cycle. Transcription of the cyclin E gene is known to be cell cycle-dependent. We have shown previously that mRNA levels of cyclin E are regulated positively by mitogens and negatively by TGF-beta. Much circumstantial evidence implicates both E2F transcription factors and the(More)
E-type cyclins are thought to drive cell-cycle progression by activating cyclin-dependent kinases, primarily CDK2. We previously found that cyclin E-null cells failed to incorporate MCM helicase into DNA prereplication complex during G(0) --> S phase progression. We now report that a kinase-deficient cyclin E mutant can partially restore MCM loading and S(More)
Cyclins are regulatory subunits of cyclin-dependent kinases. Cyclin A, the first cyclin ever cloned, is thought to be an essential component of the cell-cycle engine. Mammalian cells encode two A-type cyclins, testis-specific cyclin A1 and ubiquitously expressed cyclin A2. Here, we tested the requirement for cyclin A function using conditional knockout mice(More)
Interaction of spherical particles with cells and within animals has been studied extensively, but the effects of shape have received little attention. Here we use highly stable, polymer micelle assemblies known as filomicelles to compare the transport and trafficking of flexible filaments with spheres of similar chemistry. In rodents, filomicelles(More)
D-type cyclins (cyclins D1, D2, and D3) are key components of cell cycle machinery in mammalian cells. These proteins are believed to drive cell cycle progression by associating with their kinase partners, cyclin-dependent kinases, and by directing phosphorylation of critical cellular substrates. In addition, D-cyclins play a kinase-independent role by(More)
The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned,(More)