Learn More
In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such ‘multilayer’ features into account to try(More)
We present a detailed analytical and numerical study for the spreading of infections in complex population networks with acquired immunity. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity(More)
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of(More)
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for(More)
It is not fully understood why we cooperate with strangers on a daily basis. In an increasingly global world, where interaction networks and relationships between individuals are becoming more complex, different hypotheses have been put forward to explain the foundations of human cooperation on a large scale and to account for the true motivations that are(More)
The existence or nonexistence of a percolation threshold on power law correlated graphs is a fundamental question for which a general criterion is lacking. In this work we investigate the problems of site and bond percolation on graphs with degree correlations and their connection with spreading phenomena. We obtain some general expressions that allow the(More)
We introduce a numerical method to solve epidemic models on the underlying topology of complex networks. The approach exploits the mean-field-like rate equations describing the system and allows us to work with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study the susceptible-infected-removed(More)
– In this work, we study the synchronization of coupled phase oscillators on the underlying topology of scale-free networks. In particular, we assume that each network’s component is an oscillator and that each interacts with the others following the Kuramoto model. We then study the onset of global phase synchronization and fully characterize the system’s(More)
The recent wave of mobilizations in the Arab world and across Western countries has generated much discussion on how digital media is connected to the diffusion of protests. We examine that connection using data from the surge of mobilizations that took place in Spain in May 2011. We study recruitment patterns in the Twitter network and find evidence of(More)