Learn More
The phenol-degrading solvent-tolerant bacterium Pseudomonas putida P8 changed its cell shape when grown in the presence of aromatic compounds such as phenol and 4-chlorophenol. The sizes of cells that had been growing after addition of different concentrations of the toxic compounds were measured using a coulter counter that calculates the sizes of the(More)
Stenotrophomonas sp. RMSK capable of degrading acenaphthylene as a sole source of carbon and energy was isolated from coal sample. Metabolites produced were analyzed and characterized by TLC, HPLC and mass spectrometry. Identification of naphthalene-1,8-dicarboxylic acid, 1-naphthoic acid, 1,2-dihydroxynaphthalene, salicylate and detection of key enzymes(More)
The solvent-tolerant bacterium Enterobacter sp. VKGH12 is able to grow in toxic concentrations of n-butanol up to 1.5 % (volume in volume) as the sole carbon and energy source. Morphology changes in the cells growing on increasing concentrations of n-butanol were observed. The size of the bacteria decreased with increasing concentrations of n-butanol, also(More)
Bacterial aerial growth with reductive cellular division and morphological development has not been reported from single-cell bacteria. Here we show that within 1 month of incubation in vaporized p-cresol, Pseudomonas sp. KL28 form shiny, highly branched specialized aerial structures of millimetre-scale diameter. The developmental process displayed(More)
A bacterial strain DGVK1 capable of using N,N-dimethylformamide (DMF) as sole source of carbon and nitrogen was isolated from the soil samples collected from the coalmine leftovers. The molecular phylogram generated using the complete sequence of 16S rDNA of the strain DGVK1 showed close links to the bacteria grouped under Brucellaceae family that belongs(More)
When grown with vaporized alkylphenols such as p-cresol as the sole carbon and energy source, several isolated Rhodococcus strains formed growth structures like miniature mushrooms, termed here specialized aerial architectures (SAA), that reached sizes of up to 0.8 mm in height. Microscopic examination allowed us to view the distinct developmental stages(More)
In the presence of vaporized p-cresol, Pseudomonas alkylphenolia KL28 forms specialized aerial structures (SAS). A transposon mutant of strain KL28 (C23) incapable of forming mature SAS was isolated. Genetic analysis of the C23 mutant revealed the transposon insertion in a gene (ssg) encoding a putative glycosyltransferase, which is homologous to the(More)
Two multidrug-resistant Bacteroides fragilis clinical isolates contain and express a novel nim gene, nimJ, that is not recognized by the "universal" nim primers and can confer increased resistance to metronidazole when introduced into a susceptible strain on a multicopy plasmid. HMW615, an appendiceal isolate, contains at least two copies of nimJ on its(More)
The mariner transposon vector pYV07 was tested for use in the mutagenesis of Bacteroides fragilis 638R. The transposon vector efficiently generated mutants in B. fragilis 638R. The transposon disrupted genes were scattered throughout the genome of B. fragilis 638R. This method serves as a powerful tool to study B. fragilis.
Pseudomonas alkylphenolia is known to form different types of multicellular structures depending on the environmental stimuli. Aerial structures formed during vapor p-cresol utilization are unique. Transposon mutants that showed a smooth colony phenotype failed to form a differentiated biofilm, including aerial structures and pellicles, and showed deficient(More)