Learn More
Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species. Here, we apply new sequencing technology to measure directly one(More)
mRNA localization and regulated translation provide a means of spatially restricting gene expression within neurons during axon guidance and long-term synaptic plasticity. Here we show that synapse formation specifically alters the localization of the mRNA encoding sensorin, a peptide neurotransmitter with neurotrophin-like properties. In isolated Aplysia(More)
Protein kinase Cs (PKCs) are important effectors of synaptic plasticity. In Aplysia, there are two major phorbol ester-activated PKCs, Ca2+-activated PKC Apl I and Ca2+-independent PKC Apl II. Functional Apl II, but not Apl I, in sensory neurons is required for a form of short-term facilitation induced at sensorimotor synapses by the facilitatory(More)
Short-term homosynaptic depression and heterosynaptic facilitation of transmitter release from mechanoreceptor sensory neurons of Aplysia are involved in habituation and sensitization, respectively, of defensive withdrawal reflexes. We investigated whether synaptic transmission is regulated in these forms of plasticity by means of changes in the size of the(More)
The Trk family of receptor tyrosine kinases plays a role in synaptic plasticity and in behavioral memory in mammals. Here, we report the discovery of a Trk-like receptor, ApTrkl, in Aplysia. We show that it is expressed in the sensory neurons, the locus for synaptic facilitation, which is a cellular model for memory formation. Serotonin, the facilitatory(More)
BACKGROUND Long-lasting forms of synaptic plasticity have been shown to depend on changes in gene expression. Although many studies have focused on the regulation of transcription and translation during learning-related synaptic plasticity, regulated protein degradation provides another common means of altering the macromolecular composition of cells. (More)
Signals received at distal synapses of neurons must be conveyed to the nucleus to initiate the changes in transcription that underlie long-lasting synaptic plasticity. The presence of importin nuclear transporters and of select transcription factors at synapses raises the possibility that importins directly transport transcription factors from synapse to(More)
An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF,(More)
Adiponectin, an adipocyte-derived polypeptide hormone, plays an important role in regulating fatty acid oxidation. beta-oxidation of fatty acids supplies most of the cardiac energy and carnitine palmitoyltransferase (CPT)-1 serves as a key regulator during this process. To characterize the potential effects of adiponectin on CPT-1, we incubated rat neonatal(More)
Long-term memory and synaptic plasticity require changes in gene expression and yet can occur in a synapse-specific manner. Messenger RNA localization and regulated translation at synapses are thus critical for establishing synapse specificity. Using live-cell microscopy of photoconvertible fluorescent protein translational reporters, we directly visualized(More)