Learn More
BACKGROUND In response to varied cell stress signals, the p53 tumor-suppressor protein activates a multitude of genes encoding proteins with functions in cell-cycle control, DNA repair, senescence, and apoptosis. The role of p53 in transcription of other types of RNAs, such as microRNAs (miRNAs) is essentially unknown. RESULTS Using gene-expression(More)
Biologically and clinically meaningful tumor classification schemes have long been sought. Some malignant epithelial neoplasms, such as those in the thyroid and endometrium, exhibit more than one pattern of differentiation, each associated with distinctive clinical features and treatments. In other tissues, all carcinomas, regardless of morphological type,(More)
The Wnt pathway regulates cell fate, proliferation, and apoptosis, and defects in the pathway play a key role in many cancers. Although Wnts act to stabilize beta-catenin levels in the cytosol and nucleus, a multiprotein complex containing adenomatous polyposis coli, glycogen synthase kinase 3beta, and Axin1 or its homolog Axin2/Axil/conductin promotes(More)
If left untreated, a subset of high-grade squamous intraepithelial lesions (HSIL) of the cervix will progress to invasive squamous cell carcinomas (SCC). To identify genes whose differential expression is linked to cervical cancer progression, we compared gene expression in microdissected squamous epithelial samples from 10 normal cervices, 7 HSILs, and 21(More)
The activity of ␤-catenin (␤-cat), a key component of the Wnt signaling pathway, is deregulated in about 40% of ovarian endometrioid adenocar-cinomas (OEAs), usually as a result of CTNNB1 gene mutations. The function of ␤-cat in neoplastic transformation is dependent on T-cell factor (TCF) transcription factors, but specific genes activated by the(More)
In various cancers, inactivating mutations in the adenomatous polyposis coli or Axin tumor suppressor proteins or activating mutations in beta-catenin's amino-terminal domain elevate beta-catenin levels, resulting in marked effects on T-cell factor (TCF)-regulated transcription. Several candidate beta-catenin/TCF-regulated genes in cancer have been(More)
One histologic subtype of ovarian carcinoma, ovarian endometrioid adenocarcinoma (OEA), frequently harbors mutations that constitutively activate Wnt/beta-catenin-dependent signaling. We now show that defects in the PI3K/Pten and Wnt/beta-catenin signaling pathways often occur together in a subset of human OEAs, suggesting their cooperation during OEA(More)
The activity of beta-catenin (beta-cat), a key component of the Wnt signaling pathway, is deregulated in about 40% of ovarian endometrioid adenocarcinomas (OEAs), usually as a result of CTNNB1 gene mutations. The function of beta-cat in neoplastic transformation is dependent on T-cell factor (TCF) transcription factors, but specific genes activated by the(More)
In many cancers, inactivation of the adenomatous polyposis coli (APC) or Axin tumor suppressor proteins or activating mutations in beta-catenin lead to elevated beta-catenin levels, enhanced binding of beta-catenin to T cell factor (TCF) proteins, and increased expression of TCF-regulated genes. We found that the gene for the basic helix-loop-helix(More)
BACKGROUND & AIMS Adenomatous polyps are precursors to colorectal cancer (CRC), whereas hyperplastic polyps (HPPs) have low risk of progression to CRC. Mutations in KRAS are found in ∼40% of CRCs and large adenomas and a subset of HPPs. We investigated the reasons why HPPs with KRAS mutations lack malignant potential and compared the effects of Kras/KRAS(More)