Learn More
We explore a new approach to shape recognition based on a virtually in nite family of binary features (\queries") of the image data, designed to accommodate prior information about shape invariance and regularity. Each query corresponds to a spatial arrangement of several local topographic codes (\tags") which are in themselves too primitive and common to(More)
Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical(More)
We propose a computational model for detecting and localizing instances from an object class in static gray-level images. We divide detection into visual selection and final classification, concentrating on the former: drastically reducing the number of candidate regions that require further, usually more intensive, processing, but with a minimum of(More)
Minimizing a nonlinear functional is presented as a way of obtaining a planar mapping that matches two similar images. A smoothing term is added to the nonlinear functional to penalize discontinuous and irregular solutions. One option for the smoothing term is a quadratic form generated by a linear differential operator. The functional is then minimized(More)
We describe an architecture for invariant visual detection and recognition. Learning is performed in a single central module. The architecture makes use of a replica module consisting of copies of retinotopic layers of local features, with a particular design of inputs and outputs, that allows them to be primed either to attend to a particular location, or(More)
A new method of model registration is proposed using graphical templates. A graph of landmarks is chosen in the template image. All possible candidates for these landmarks are found in the data image using local operators. A dynamic programming algorithm on decomposable subgraphs of the template graph nds the optimal match to a subset of the candidate(More)
We formulate a deformable template model for objects with an efficient mechanism for computation and parameter estimation. The data consists of binary oriented edge features, robust to photometric variation and small local deformations. The template is defined in terms of probability arrays for each edge type. A primary contribution of this paper is the(More)
Multiclass shape detection, in the sense of recognizing and localizing instances from multiple shape classes, is formulated as a two-step process in which local indexing primes global interpretation. During indexing a list of instantiations (shape identities and poses) is compiled, constrained only by no missed detections at the expense of false positives.(More)
The use of chronic intracortical multielectrode arrays has become increasingly prevalent in neurophysiological experiments. However, it is not obvious whether neuronal signals obtained over multiple recording sessions come from the same or different neurons. Here, we develop a criterion to assess single-unit stability by measuring the similarity of 1)(More)