Learn More
Immobilization of selenocystamine on TiO(2) film deposited on silicon wafer and 316 stainless steel stents for catalytic generation of nitric oxide was described. Polydopamine was used as the linker for immobilization of selenocystamine to the TiO(2) surface. In vitro stability of the immobilized selenocystamine was investigated and the result shows surface(More)
Biosystem-surface interactions play an important role in various biological events and determine the ultimate functionality of implanted devices. Endothelialization or mimicking of endothelium on the surface of cardiovascular materials is a promising way to solve the problems of material-induced thrombosis and restenosis. Meanwhile, a multifunctional(More)
In this review, the authors summarize the developments in surface modification of cardiovascular materials especially in author's laboratory. The authors focus on three different strategies to construct multifunctional surfaces including coimmobilization of various biomolecules on stent surfaces, stem cell based therapy systems, and a single-molecule(More)
As nitric oxide (NO) plays vital roles in the cardiovascular system, incorporating this molecule into cardiovascular stents is considered as an effective method. In the present study, selenocystine with different chirality (i.e., l- and d-selenocystine) was used as the catalytic molecule immobilized on TiO2 films for decomposing endogenous NO donor. The(More)
Adsorbed proteins and their conformational change on blood-contacting biomaterials will determine their final hemocompatibility. It has frequently been reported that surface chirality of biomaterials may highly influence their protein adsorption behavior. Here, lysine and tartaric acid with different chirality were immobilized onto TiO2 films respectively,(More)
The continuous release of nitric oxide (NO) by the native endothelium of blood vessels plays a substantial role in the cardiovascular physiology, as it influences important pathways of cardiovascular homeostasis, inhibits vascular smooth muscle cell (VSMC) proliferation, inhibits platelet activation and aggregation, and prevents atherosclerosis. In this(More)
Recent investigations have demonstrated that polydopamine (PDA)-modified surfaces were beneficial to the proliferation of endothelial cells (ECs). In this work, PDA coated 316L stainless steels (316L SS) were thermally treated at 50, 100, and 150 °C respectively (hereafter designated as Th50, Th100, and Th150) and consequently produced diverse surface(More)
Polydopamine (PDA), a bio-inspired polymer, has been very attractive for diverse functional applications by immobilizing biomolecules. In this work, a novel approach of using PDA for improved biomolecule immobilization was developed. A thin PDA layer was strategically coated onto 316L stainless steel and thermally treated at 150°C (PDA-Th150). Subsequently,(More)
Photoreactive heparin was synthesized by reaction of 4-azidoaniline and heparin. An organic layer was introduced on the surface of Ti-O by 3-aminopropylphosphonic acid assembling, and then the modified heparin was immobilized on the surface by UV irradiation. Water contact angle was used to characterize the hydrophilicity, quantitive assay was done by azure(More)
  • 1