Learn More
Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed,(More)
We have shown previously that a 500-bp region of the human insulin receptor promoter (-0.3 to -1.8 kb) was able to stimulate transcription from a heterologous thymidine kinase promoter in HepG2 hepatoma cells but not in HeLa fibroblasts. Footprint analysis localized the transcription factor binding sites to a 36-bp region at -1420. In this paper, we analyze(More)
An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether(More)
Senescence is regarded as a physiological response of cells to stress, including telomere dysfunction, aberrant oncogenic activation, DNA damage, and oxidative stress. This stress response has an antagonistically pleiotropic effect to organisms: beneficial as a tumor suppressor, but detrimental by contributing to aging. The emergence of senescence as an(More)
The E3 ubiquitin ligase Smurf2 mediates ubiquitination and degradation of several protein targets involved in tumorigenesis and induces senescence in human cells. However, the functional role of Smurf2 in tumorigenesis has not been fully evaluated. In this study, we generated a mouse model of Smurf2 deficiency to characterize the function of this E3 ligase(More)
Notch signaling regulates a broad spectrum of cell fate decisions and differentiation. Both oncogenic and tumor suppressor functions have been shown for Notch signaling. However, little is known about the underlying mechanisms of its tumor suppressor function. Here, we report that expression of Notch3, a member of Notch family transmembrane receptors, was(More)
The inhibitor of differentiation or DNA binding (Id) family of transcription regulators plays an important role in cell proliferation, differentiation, and senescence. However, regulation of Id expression during these processes is poorly understood. Id proteins are known to undergo rapid turnover mediated by the ubiquitin-proteasome pathway.(More)
The limitation of proliferative potential in human somatic cells imposed by replicative senescence has been proposed as a mechanism of tumor suppression. The E3 ubiquitin ligase Smurf2 is up-regulated during replicative senescence in response to telomere shortening, and induces senescence when expressed adventitiously in early passage or(More)
OBJECTIVE Hepatoma-derived growth factor (HDGF)-related proteins (HRPs) comprise a family of six members and are characterised by a conserved HATH domain. Among the family members, HDGF was the first to be identified as a mitogenic factor and shown to play an important role in hepatocellular carcinoma pathogenesis. The aim of the present study is to examine(More)
The age-dependent decline in the self-renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age-dependent decline of stem cell self-renewal, although direct evidence supporting this(More)