Yael Roichman

Learn More
Quasicrystals have a higher degree of rotational and point-reflection symmetry than conventional crystals. As a result, quasicrystalline heterostructures fabricated from dielectric materials with micrometer-scale features exhibit interesting and useful optical properties including large photonic bandgaps in two-dimensional systems. We demonstrate the(More)
The mechanical properties of polymer gels based on cytoskeleton proteins (e.g. actin) have been studied extensively due to their significant role in biological cell motility and in maintaining the cell's structural integrity. Microrheology is the natural method of choice for such studies due to its economy in sample volume, its wide frequency range, and its(More)
The cytoskeleton protein actin assembles into large bundles when supporting stresses in the cell, but grows into a fine branched network to induce cell motion. Such self-organization processes are studied in artificial networks of cytoskeleton proteins with thick actin bundles and large motor protein aggregates to enable optical observation. The effect of(More)
We investigate experimentally and theoretically thin layers of colloid particles held adjacent to a solid substrate by gravity. Epifluorescence, confocal, and holographic microscopy, combined with Monte Carlo and hydrodynamic simulations, are applied to infer the height distribution function of particles above the surface, and their diffusion coefficient(More)
We study the effect of mergers in the force chain model describing the stress profile in static granular materials. Combining numerical and analytical calculations, we show that granular materials do not generally behave in an elasticlike manner; however, they may under specific conditions, which are elaborated. Nonelastic behavior resulting from the(More)
  • 1