Learn More
The thermoelectric transport properties in atomic scale conductors consisting of a Si atom connected by two electrodes are investigated. It is found that both the electrical current and the heat current have two contributions, one from the voltage and the other from the temperature gradient. The quantities such as the Seebeck thermopower and the thermal(More)
We report theoretical investigations of the quantized spin-Hall conductance fluctuation of graphene in the presence of disorder. Two graphene models that exhibit the quantized spin-Hall effect (QSHE) are analyzed. Model I is with unitary symmetry under an external magnetic field B not = 0 but with a zero spin-orbit interaction, t(SO)=0. Model II is with(More)
In this paper, we present a comprehensive study on the electronic and optoelectronic properties of indium monochalcogenide (InX with X = S, Se, Te) monolayers with and without strains. Our results show that InX monolayers are indirect semiconductors. Upon the application of strain, the band structures can be modulated and an indirect-to-direct bandgap(More)
Based on nonequilibrium Green's function approach and density functional theory, we report first principles investigation on ac transport of four carbon atom chain connected by two semi-infinite aluminum leads Al-C(4)-Al. For small alternating external bias voltage, we expanded nonequilibrium Green's function to the first order in the external voltage and(More)
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density(More)
We report the theoretical investigation of the shot noise of the spin current (S(σ)) and the spin transfer torque (S(τ)) for non-collinear spin polarized transport in a spin-valve device which consists of a normal scattering region connected by two ferromagnetic electrodes (MNM system). Our theory was developed using the non-equilibrium Green's function(More)
A photoinduced current of a layered MoS2-based transistor is studied from first-principles. Under the illumination of circular polarized light, a valley-polarized current is generated, which can be tuned by the gate voltage. For monolayer MoS2, the valley-polarized spin-up (down) electron current at K (K') points is induced by the right (left) circular(More)
Based on nonequilibrium Green's function approach and density functional theory, we report first principles investigation on ac transport of four carbon atomic chain connected by two semi-infinite aluminum leads, Al-C(4)-Al. For small alternating external bias voltage, we expanded nonequilibrium Green's function to the first order in the external voltage(More)
  • 1